【題目】執(zhí)行如圖所示的偽代碼,輸出i的值為 .
【答案】7
【解析】解:模擬執(zhí)行如圖所示的偽代碼,如下; i=1,S=0,滿足條件S<20,執(zhí)行循環(huán):
S=2×0+3=3,i=3,滿足條件S<20,執(zhí)行循環(huán):
S=2×3+3=9,i=5,滿足條件S<20,執(zhí)行循環(huán):
S=2×9+3=21,i=7,不滿足條件S<20,終止循環(huán);
輸出i的值為7.
所以答案是:7.
【考點精析】本題主要考查了莖葉圖的相關(guān)知識點,需要掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量單位:噸,將數(shù)據(jù)按照,,分成9組,制成了如圖所示的頻率分布直方圖.
(1)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù)說明理由;
(2)估計居民月均用水量的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinωxcosωx﹣ (ω>0)圖象的兩條相鄰對稱軸為 .
(1)求函數(shù)y=f(x)的對稱軸方程;
(2)若函數(shù)y=f(x)﹣ 在(0,π)上的零點為x1 , x2 , 求cos(x1﹣x2)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=m﹣|2﹣x|,且f(x+2)>0的解集為(﹣1,1).
(1)求m的值;
(2)若正實數(shù)a,b,c,滿足a+2b+3c=m.求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科研課題組通過一款手機APP軟件,調(diào)查了某市1000名跑步愛好者平均每周的跑步量(簡稱“周跑量”),得到如下的頻數(shù)分布表
周跑量(km/周) | |||||||||
人數(shù) | 100 | 120 | 130 | 180 | 220 | 150 | 60 | 30 | 10 |
(1)在答題卡上補全該市1000名跑步愛好者周跑量的頻率分布直方圖:
注:請先用鉛筆畫,確定后再用黑色水筆描黑
(2)根據(jù)以上圖表數(shù)據(jù)計算得樣本的平均數(shù)為,試求樣本的中位數(shù)(保留一位小數(shù)),并用平均數(shù)、中位數(shù)等數(shù)字特征估計該市跑步愛好者周跑量的分布特點
(3)根據(jù)跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價格不一樣,如下表:
周跑量 | 小于20公里 | 20公里到40公里 | 不小于40公里 |
類別 | 休閑跑者 | 核心跑者 | 精英跑者 |
裝備價格(單位:元) | 2500 | 4000 | 4500 |
根據(jù)以上數(shù)據(jù),估計該市每位跑步愛好者購買裝備,平均需要花費多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時,求的最小值;
(2)設(shè)函數(shù)恰有兩個零點,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),則下列說法不正確的是( )
A.其圖象開口向上,且始終與軸有兩個不同的交點
B.無論取何實數(shù),其圖象始終過定點
C.其圖象對稱軸的位置沒有確定,但其形狀不會因的取值不同而改變
D.函數(shù)的最小值大于
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中, 已知圓 ,橢圓 ,為橢圓右頂點.過原點且異于坐標(biāo)軸的直線與橢圓交于兩點,直線與圓的另一交點為,直線與圓的另一交點為,其中.設(shè)直線的斜率分別為.
(1)求的值;
(2)記直線的斜率分別為,是否存在常數(shù),使得?若存在,求值;若不存在,說明理由;
(3)求證:直線必過點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com