【題目】已知函數(shù)f(x)=m﹣|2﹣x|,且f(x+2)>0的解集為(﹣1,1).
(1)求m的值;
(2)若正實(shí)數(shù)a,b,c,滿足a+2b+3c=m.求 的最小值.
【答案】
(1)解:因?yàn)閒(x+2)=m﹣|x|
所以由f(x+2)>0得|x|<m
由|x|<m有解,得m>0,且其解集為(﹣m,m)
又不等式f(x+2)>0解集為(﹣1,1),故m=1
(2)解:由(1)知a+2b+3c=1,又a,b,c是正實(shí)數(shù),
由柯西不等式得
當(dāng)且僅當(dāng) 時(shí)取等號
故 的最小值為9.
【解析】(1)由f(x+2)>0得|x|<m,求出解集,利用f(x+2)>0的解集為(﹣1,1),求m的值;(2)由(1)知a+2b+3c=1,利用柯西不等式即可求 的最小值.
【考點(diǎn)精析】掌握二維形式的柯西不等式是解答本題的根本,需要知道二維形式的柯西不等式:當(dāng)且僅當(dāng)時(shí),等號成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,若直線l的參數(shù)方程為 (t為參數(shù),α為l的傾斜角),曲線E的極坐標(biāo)方程為ρ=4sinθ.射線θ=β,θ=β+ ,θ=β﹣ 與曲線E分別交于不同于極點(diǎn)的三點(diǎn)A、B、C.
(1)求證:|OB|+|OC|= |OA|;
(2)當(dāng)β= 時(shí),直線l過B、C兩點(diǎn),求y0與α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于下列說法正確的是( )
A.若f(x)是奇函數(shù),則f(x)是單調(diào)函數(shù)
B.命題“若x2﹣x﹣2=0,則x=1”的逆否命題是“若x≠1,則x2﹣x﹣2=0”
C.命題p:?x∈R,2x>1024,則¬p:?x0∈R,
D.命題“?x∈(﹣∞,0),2x<x2”是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記Sn為等比數(shù)列的前n項(xiàng)和,已知S2=2,S3=-6.
(1)求的通項(xiàng)公式;
(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AA1=AC=2BC,∠ACB=90°.
(Ⅰ)求證:AC1⊥A1B;
(Ⅱ)求直線AB與平面A1BC所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖長方體中,,分別為棱,的中點(diǎn)
(1)求證:平面平面;
(2)請?jiān)诖痤}卡圖形中畫出直線與平面的交點(diǎn)(保留必要的輔助線),寫出畫法并計(jì)算的值(不必寫出計(jì)算過程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分分)
已知圓,過點(diǎn)作直線交圓于、兩點(diǎn).
(Ⅰ)當(dāng)經(jīng)過圓心時(shí),求直線的方程.
(Ⅱ)當(dāng)直線的傾斜角為時(shí),求弦的長.
(Ⅲ)求直線被圓截得的弦長時(shí),求以線段為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若不等式的解集為,求的取值范圍;
(2)當(dāng)時(shí),解不等式;
(3)若不等式的解集為,若,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com