點(diǎn)M(x,y)到定點(diǎn)F(5,0)的距離和它到定直線l:x=
9
5
的距離的比是常數(shù)
5
3
,求點(diǎn)M的軌跡.
設(shè)d是點(diǎn)M到定直線l:x=
9
5
的距離,則d=|x-
9
5
|,
依題,點(diǎn)M的軌跡就是集合P={M|
|MF|
d
=
5
3
},
由此得
(x-5)2+y2
|x-
9
5
|
=
5
3
,
化簡(jiǎn)整理得:
x2
9
-
y2
16
=1
為點(diǎn)M的軌跡方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 若直線與橢圓相交于兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn),求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,兩焦點(diǎn)F1,F(xiàn)2之間的距離為2,橢圓上第一象限內(nèi)的點(diǎn)P滿足PF1⊥PF2,且△PF1F2的面積為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若橢圓C的右頂點(diǎn)為A,直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點(diǎn)M,N,且滿足AM⊥AN.求證:直線l過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定直線l與平面α成60°角,點(diǎn)P是平面α內(nèi)的一動(dòng)點(diǎn),且點(diǎn)P到直線l的距離為3,則動(dòng)點(diǎn)P的軌跡是( 。
A.圓B.橢圓的一部分
C.拋物線的一部分D.橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)定點(diǎn)M(-3,4),動(dòng)點(diǎn)N在圓x2+y2=4上運(yùn)動(dòng),以O(shè)M、ON為鄰邊作平行四邊形MONP,則點(diǎn)P的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

△ABC的兩個(gè)頂點(diǎn)坐標(biāo)分別是B(0,-2)和C(0,2),頂點(diǎn)A滿足sinB+sinC=
3
2
sinA

(1)求頂點(diǎn)A的軌跡方程;
(2)若點(diǎn)P(x,y)在(1)軌跡上,求μ=2x-y的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1(-5,0),F(xiàn)2(5,0),動(dòng)點(diǎn)P(x,y)滿足|PF1|-|PF2|=10,則動(dòng)點(diǎn)P的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,P是拋物線C:y=
1
2
x2上一點(diǎn),直線l過點(diǎn)P且與拋物線C交于另一點(diǎn)Q.
(Ⅰ)若直線l與過點(diǎn)P的切線垂直,求線段PQ中點(diǎn)M的軌跡方程;
(Ⅱ)若直線l不過原點(diǎn)且與x軸交于點(diǎn)S,與y軸交于點(diǎn)T,試求
|ST|
|SP|
+
|ST|
|SQ|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知?jiǎng)訄A過定點(diǎn)P(1,0),且與定直線l:x=-1相切;
(1)求動(dòng)圓圓心M的軌跡方程;
(2)設(shè)過點(diǎn)P且斜率為-
3
的直線與曲線M相交于A、B兩點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案