【題目】已知四棱錐中,底面為平行四邊形,點、、分別在、、.

1)若,求證:平面平面

2)若滿足,則點滿足什么條件時,.

【答案】1)證明見解析;(2)當點的中點時,.

【解析】

1)由可證明出,再由,可得出,利用直線與平面平行的判定定理可證明出平面,同理證明平面,再由平面與平面平行的判定定理可證明出平面平面;

2)連接于點,連接,取的中點,取的中點,連接、,利用直線與平面平行的判定定理證明出平面平面,再利用平面與平面平行的判定定理證明出平面平面,于此可得出平面.

1,

四邊形是平行四邊形,,,

平面平面,平面.

,,

平面,平面平面.

,、平面,平面平面;

2)連接于點,連接,取的中點,取的中點,連接、、,則點的中點,下面證明:當點的中點時,平面.

的中點,,的中點,

的中點,,

平面,平面平面,同理,平面.

,、平面,平面平面.

平面,平面.

因此,當點的中點時,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2018湖南(長郡中學、株洲市第二中學)、江西(九江一中)等十四校高三第一次聯(lián)考已知函數(shù)(其中為常數(shù), 為自然對數(shù)的底數(shù), ).

)若函數(shù)的極值點只有一個,求實數(shù)的取值范圍;

)當時,若(其中)恒成立,求的最小值的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

)當時,判斷在定義域上的單調性;

)若上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)為二次函數(shù),且

(1)求f(x)的表達式;

(2)判斷函數(shù)在(0,+∞)上的單調性,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面為直角梯形,,,,為正三角形.

(1)若點是棱的中點,求證:平面

(2)若平面⊥平面,在(1)的條件下,試求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點是圓心為半徑為的半圓弧上從點數(shù)起的第一個三等分點,點是圓心為半徑為的半圓弧的中點,、分別是兩個半圓的直徑,,直線與兩個半圓所在的平面均垂直,直線共面.

1)求三棱錐的體積;

2)求直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知直四棱柱的底面是直角梯形,,、分別是棱、上的動點,且,,,.

1)證明:無論點怎樣運動,四邊形都為矩形;

2)當時,求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(1)求橢圓的標準方程;

(2)若直線與橢圓相交于兩點且.求證: 的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電視臺問政直播節(jié)目首場內容是“讓交通更順暢”.A、B、CD四個管理部門的負責人接受問政,分別負責問政A、B、CD四個管理部門的現(xiàn)場市民代表(每一名代表只參加一個部門的問政)人數(shù)的條形圖如下.為了了解市民對武漢市實施“讓交通更順暢”幾個月來的評價,對每位現(xiàn)場市民都進行了問卷調查,然后用分層抽樣的方法從調查問卷中抽取20份進行統(tǒng)計,統(tǒng)計結果如下面表格所示:

滿意

一般

不滿意

A部門

50%

25%

25%

B部門

80%

0

20%

C部門

50%

50%

0

D部門

40%

20%

40%

(1)若市民甲選擇的是A部門,求甲的調查問卷被選中的概率;

(2)若想從調查問卷被選中且填寫不滿意的市民中再選出2人進行電視訪談,求這兩人中至少有一人選擇的是D部門的概率.

查看答案和解析>>

同步練習冊答案