【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,,是棱上的一點(diǎn).
(1)若平面,證明:;
(2)在(1)的條件下,棱上是否存在點(diǎn),使直線與平面所成角的大小為?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1) 見解析;(2)在棱上存在點(diǎn)使直線與平面所成角的大小為,此時(shí).
【解析】
(1)連接交于,連接由平面的性質(zhì)定理得是的中點(diǎn),即可得出;(2)建立空間直角坐標(biāo)系,求出平面的法向量,由直線與平面所成角的向量法,得出的值.
(1)連接交于,連接,則是平面與平面的交線.因?yàn)?/span>平面,平面,所以.又因?yàn)?/span>是中點(diǎn),所以是的中點(diǎn).所以.
(2)由已知條件可知,所以,
以為原點(diǎn),為軸,為軸,為軸建立空間直角坐標(biāo)系.
則,,,,
,,,.
假設(shè)在棱上存在點(diǎn),設(shè),
得,.
記平面的法向量為,則
即取,則,
所以.
要使直線與平面所成角的大小為,
則,即,解得.
所以在棱上存在點(diǎn)使直線與平面所成角的大小為.
此時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.拋擲一枚硬幣,正面朝上的概率是,所以拋擲兩次一定會(huì)出現(xiàn)一次正面朝上的情況
B.某地氣象局預(yù)報(bào)說(shuō),明天本地降水概率為,這說(shuō)明明天本地有的區(qū)域下雨
C.概率是客觀存在的,與試驗(yàn)次數(shù)無(wú)關(guān)
D.若買彩票中獎(jiǎng)的概率是萬(wàn)分之一,則買彩票一萬(wàn)次就有一次中獎(jiǎng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“中國(guó)大能手”是央視推出的一檔大型職業(yè)技能挑戰(zhàn)賽類節(jié)目,旨在通過(guò)該節(jié)目,在全社會(huì)傳播和弘揚(yáng)“勞動(dòng)光榮、技能寶貴、創(chuàng)造偉大”的時(shí)代風(fēng)尚.某公司準(zhǔn)備派出選手代表公司參加“中國(guó)大能手”職業(yè)技能挑戰(zhàn)賽.經(jīng)過(guò)層層選拔,最后集中在甲、乙兩位選手在一項(xiàng)關(guān)鍵技能的區(qū)分上,選手完成該項(xiàng)挑戰(zhàn)的時(shí)間越少越好.已知這兩位選手在15次挑戰(zhàn)訓(xùn)練中,完成該項(xiàng)關(guān)鍵技能挑戰(zhàn)所用的時(shí)間(單位:秒)及挑戰(zhàn)失。ㄓ谩啊痢北硎荆┑那闆r如下表1:
序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
甲 | × | 96 | 93 | × | 92 | × | 90 | 86 | × | × | 83 | 80 | 78 | 77 | 75 |
乙 | × | 95 | × | 93 | × | 92 | × | 88 | 83 | × | 82 | 80 | 80 | 74 | 73 |
據(jù)表1中甲、乙兩選手完成該項(xiàng)關(guān)鍵技能挑戰(zhàn)成功所用時(shí)間的數(shù)據(jù),應(yīng)用統(tǒng)計(jì)軟件得下表2:
數(shù)字特征 | 均值(單位:秒)方差 | 方差 |
甲 | 85 | 50.2 |
乙 | 84 | 54 |
(1)在表1中,從選手甲完成挑戰(zhàn)用時(shí)低于90秒的成績(jī)中,任取2個(gè),求這2個(gè)成績(jī)都低于80秒的概率;
(2)若該公司只有一個(gè)參賽名額,以該關(guān)鍵技能挑戰(zhàn)成績(jī)?yōu)闃?biāo)準(zhǔn),根據(jù)以上信息,判斷哪位選手代表公司參加職業(yè)技能挑戰(zhàn)賽更合適?請(qǐng)說(shuō)明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了加強(qiáng)學(xué)生數(shù)學(xué)核心素養(yǎng)的培養(yǎng),鍛煉學(xué)生自主探究學(xué)習(xí)的能力,他們以函數(shù)為基本素材,研究該函數(shù)的相關(guān)性質(zhì),取得部分研究成果如下:其中研究成果正確的是( )
A.同學(xué)甲發(fā)現(xiàn):函數(shù)的定義域?yàn)椋ī?/span>1,1),且f(x)是偶函數(shù)
B.同學(xué)乙發(fā)現(xiàn):對(duì)于任意的x∈(﹣1,1),都有
C.同學(xué)丙發(fā)現(xiàn):對(duì)于任意的a,b∈(﹣1,1),都有
D.同學(xué)丁發(fā)現(xiàn):對(duì)于函數(shù)定義域內(nèi)任意兩個(gè)不同的實(shí)數(shù)x1,x2,總滿足
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在年月日,某市物價(jià)部門對(duì)本市的家商場(chǎng)的某商品的一天銷售量及其價(jià)格進(jìn)行調(diào)查,家商場(chǎng)的售價(jià)元和銷售量件之間的一組數(shù)據(jù)如表所示:
價(jià)格 | 9 | 9.5 | 10 | 10.5 | 11 |
銷售量 | 11 | 10 | 8 | 6 | 5 |
根據(jù)公式計(jì)算得相關(guān)系數(shù),其線性回歸直線方程是:,則下列說(shuō)法正確的有( )
參考:
A.有的把握認(rèn)為變量具有線性相關(guān)關(guān)系
B.回歸直線恒過(guò)定點(diǎn)
C.
D.當(dāng)時(shí),的估計(jì)值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)lg.
(1)判斷并證明函數(shù)f(x)的單調(diào)性;
(2)解關(guān)于x的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,,分別是邊上的三等分點(diǎn),將分別沿、折起到、的位置,且使平面底面,平面底面,連結(jié).
(1)證明:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù),在某一周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
x | |||||
0 | 2 | 0 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com