已知直三棱柱中, , , 是和的交點, 若.
(1)求的長; (2)求點到平面的距離;
(3)求二面角的平面角的正弦值的大小.
【解析】本試題主要考查了距離和角的求解運用。第一問中,利用ACCA為正方形, AC=3
第二問中,利用面BBCC內(nèi)作CDBC, 則CD就是點C平面ABC的距離CD=,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為
解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 …………… 5分
(2)在面BBCC內(nèi)作CDBC, 則CD就是點C平面ABC的距離CD= … 8分
(3) 易得AC面ACB, 過E作EHAB于H, 連HC, 則HCAB
CHE為二面角C-AB-C的平面角. ……… 9分
sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分
解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標系, 設|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ……………………… 3分
=(2, -, -), =(0, -3, -h(huán)) ……… 4分
·=0, h=3
(2)設平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)
點A到平面ABC的距離為H=||=……… 8分
(3) 設平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)
二面角C-AB-C的大小滿足cos== ……… 11分
二面角C-AB-C的平面角的正弦大小為
科目:高中數(shù)學 來源:2012-2013學年四川省高二“零診”考試理科數(shù)學試卷(解析版) 題型:解答題
(12分)已知直三棱柱中,,點M是的中點,Q是AB的中點,
(1)若P是上的一動點,求證:;
(2)求二面角大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(重慶卷解析版) 題型:解答題
已知直三棱柱中,,,為的中點。(Ⅰ)求點C到平面的距離;(Ⅱ)若,求二面角的平面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆遼寧省瓦房店市高二上學期期末理科數(shù)學試卷 題型:解答題
已知直三棱柱中,△為等腰直角三角形,∠=90°,且=,、、分別為、、的中點.
(1)求證:∥平面;
(2)求證:⊥平面;
(3)求二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學 來源:遼寧省撫順市六校聯(lián)合體2009-2010學年度高三二模(數(shù)學文)試題 題型:解答題
如圖,已知直三棱柱中,為等腰直角三角形,,且,分別為的中點。
(Ⅰ)求證://平面;
(Ⅱ)求證:平面;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com