某設(shè)備零件的三視圖如圖所示,則這個零件的表面積為
 

考點:由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由已知中的三視圖可知:該幾何體是以側(cè)視圖為底面的六棱柱,求出棱柱的底面面積,底面周長及棱柱的高,代入可得答案.
解答: 解:由已知中的三視圖可知:
該幾何體是以側(cè)視圖為底面的六棱柱,
底面面積S=2×2=1×1=3,
底面周長C=8
高h=2,
故這個零件的表面積為2S+Ch=22,
故答案為:22
點評:本題考查的知識點是由三視圖求表面積,其中根據(jù)已知分析出幾何體的形狀是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B為拋物線C:y2=4x上的兩個動點,點A在第一象限,點B在第四象限,l1、l2分別過點A、B且與拋物線C相切,P為l1、l2的交點.
(Ⅰ)若直線AB過拋物線C的焦點F,求證:動點P在一條定直線上,并求此直線方程;
(Ⅱ)設(shè)C、D為直線l1、l2與直線x=4的交點,求△PCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用符號“>,≥,<,≤”填空:
(1)
x
y
+
y
x
 
2(x,y∈R+);
(2)x+
1
x
 
-2(x<0);
(3)a+
1
a
 
2(a>1);
(4)(
a+b
2
)2
 
a2+b2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)不等式組
x+y+2≥0
x+ay+2≤0
表示的區(qū)域為Ω1,不等式x2+y2≤1表示的平面區(qū)域為Ω2
(1)若Ω1與Ω2有且只有一個公共點,則a=
 
;
(2)記S(a)為Ω1與Ω2公共部分的面積,則函數(shù)S(a)的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x)=3f(x+2).當(dāng)x∈[0,2)時f(x)=-x2+2x.設(shè)f(x)在[2n-2,2n)上的最大值為an,且數(shù)列{an}的前n項和為Sn,則
lim
n→∞
Sn=
 
.(其中n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=2an+n-1,若利用如圖所示的程序框圖進行運算,則輸出n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定點P在圓周x2+y2=1上,若Q,R在x2+y2=1的內(nèi)部或圓周上,且△PQR為邊長是
3
2
的正三角形,則OQ2+OR2最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|lnx|,若
1
c
>a>b>1,則f(a),f(b),f(c)比較大小關(guān)系正確的是( 。
A、f(c)>f(b)>f(a)
B、f(b)>f(c)>f(a)
C、f(c)>f(a)>f(b)
D、f(b)>f(a)>f(c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個算法的程序框圖如圖所示,若執(zhí)行該程序輸出的結(jié)果為
99
100
,則判斷框中應(yīng)填入的條件是( 。
A、i≤98?
B、i≤99?
C、i≤100?
D、i≤101?

查看答案和解析>>

同步練習(xí)冊答案