解答:
解:(Ⅰ)令
g(x)=f(x)-2x-,(x≥0)則g'(x)=f'(x)-2-x
2=e
x+e
-x-2-x
2,g''(x)=f(x)-2x,
∵g'''(x)=f'(x)-2=e
x+e
-x-2
當(dāng)x≥0時,e
x>0,e
-x>0,∴
ex+e-x≥2=2∴g'''(x)≥0,∴函數(shù)y=g''(x)(x≥0)為增函數(shù),
∴g''(x)≥g''(0)=0,即f(x)-2x≥0
∴函數(shù)y=g'(x)(x≥0)為增函數(shù),
∴g'(x)≥g'(0)=0,即e
x+e
-x≥2+x
2∴函數(shù)y=g(x)(x≥0)為增函數(shù),
∴g(x)≥g(0)=0,即當(dāng)x≥0時,
f(x)≥2x+成立;
(Ⅱ)(1)當(dāng)a≤2時,∵H(x)=f(x)-ax
∴
H′(x)=f′(x)-a=ex+e-x-a≥2-a=2-a≥0∴函數(shù)y=H(x)(x∈R)為增函數(shù),
當(dāng)x>0時,H(x)>H(0)=0,當(dāng)x<0時,H(x)<H(0)=0,
∴當(dāng)a≤2時,函數(shù)y=H(x)的零點為x=0,其零點個數(shù)為1個
(2)當(dāng)a>2時,∵對?x∈R,H(-x)=-H(x)
∴函數(shù)y=H(x)為奇函數(shù),且H(0)=0
下面討論函數(shù)y=H(x)在x>0時的零點個數(shù):
由(Ⅰ)知,當(dāng)x
0>0時,
ex0+e-x0>2,令
a=ex0+e-x0∴
H(x)=f(x)-(ex0+e-x0)x (x>0)則
H′(x)=f′(x)-(ex0+e-x0),H''(x)=f''(x)=e
x-e
-x當(dāng)x>0時,e
x>1,0<e
-x<1,∴e
x-e
-x>0,∴H''(x)>0
∴函數(shù)y=H'(x)(x>0)為增函數(shù)
∴當(dāng)0<x≤x
0時,H'(x)≤H'(x
0)=0;當(dāng)x>x
0時,H'(x)≥H'(x
0)=0
∴函數(shù)y=H(x)(x>0)的減區(qū)間為(0,x
0],增區(qū)間為(x
0,+∞)
∴當(dāng)0<x<x
0時,H(x)<H(0)=0
即對?x
0∈(0,x
0]時,H(x)<0
又由(Ⅰ)知,
H(x)=f(x)-(ex0+e-x0)x≥2x+-(ex0+e-x0)x=
x[-(ex0+e-x0-2)]當(dāng)x
0>0時,由③知
ex0+e-x0>2+>+2,
∴
>x0故,當(dāng)
x>>0時,
-(ex0+e-x0-2)>0∴
x[-(ex0+e-x0-2)]>0,即H(x)>0
由函數(shù)y=H(x)(x≥x
0)為增函數(shù)和⑥⑦及函數(shù)零點定理知,存在唯一實數(shù)
x*∈(x0,]使得H(x
*)=0,又函數(shù)y=H(x),x∈R為奇函數(shù)
∴函數(shù)y=H(x),x∈R,有且僅有三個零點.