求下列函數(shù)的值域
(1)y=
1-3x
;
(2)y=
x2-2x+3

(3)y=
1
x2+2x+3
考點:函數(shù)的值域
專題:計算題,配方法
分析:(1)考查被開方數(shù)大于等于0.
(2)被開方數(shù)先進行配方,再結(jié)合實數(shù)的平方非負性,即可求得.
( 。┓帜概浞,再求倒數(shù)的值域.
解答: 解:(1)y≥0.
(2)y=
(x-1)2+2
≥2

(3)y=
1
(x+1)2+2
∈(0,
1
2
]

故答案為:(1)[0,+∞)
(2)[2,+∞)
(3)(0,
1
2
]
點評:如果涉及到二次函數(shù),先可以考慮配方,再根據(jù)具體的式子求值域.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若ab>0,a>b,則
1
a
1
b
;
②若已知直線x=m與函數(shù)f(x)=sinx,g(x)=sin(
π
2
-x)的圖象分別交于點M,N,則|MN|的最大值為
2
;
③若數(shù)列an=n2+λn(λ∈N*)為單調(diào)遞增數(shù)列,則λ取值范圍是λ<-2;
④若直線l的斜率k<1,則直線l的傾斜角-
π
2
<α<
π
4
;
其中真命題的序號是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的是( 。
A、若
a
b
,
b
c
,則
a
c
所在直線平行
B、向量
a
、
b
c
共面即它們所在直線共面
C、空間任意兩個向量共面
D、若
a
b
,則存在唯一的實數(shù)λ,使
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式2x>x2+a對于一切x∈[-2,3]恒成立,則實數(shù)a的取值范圍( 。
A、(-∞,-8)
B、(-∞,-3)
C、(-∞,1)
D、(-8,-∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax3-3
2x2+1
(a>2),若在區(qū)間[1,2]上f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-e-x(x?R)
(Ⅰ)求證:當x≥0時,f(x)≥2x+
x3
3
;
(Ⅱ)試討論函數(shù)H(x)=f(x)-ax(x∈R)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x|x-a|+b,x∈R.
(1)當a=1,b=1時.f(2x)=
5
4
,求x的值;
(2)若b<0,b為常數(shù),任意x∈[0,1],不等式f(x)<0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在三棱柱ABC-A1B1C1中,各側(cè)棱都垂直于底面且地面為等腰直角三角形,∠ACB=90°,AC=BC=4,AA1=4,E,F(xiàn)分別在AC,BC上,且CE=3,CF=2,求幾何體EFC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,直線PA⊥平面ABC,且∠ABC=90°,又點Q,M,N分別是線段PB,AB,BC的中點,且點K是線段MN上的動點.
(Ⅰ)證明:直線QK∥平面PAC;
(Ⅱ)若PA=AB=BC=8,且二面角Q-AK-M的平面角的余弦值為
3
9
,試求MK的長度.

查看答案和解析>>

同步練習冊答案