若集合M={y|y=2x},N={y|y=logx},則M∩N=( 。
A、{x|x>1}
B、{y|y≥1}
C、{x|x>0}
D、{y|y≥0}
考點:交集及其運算
專題:集合
分析:根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的圖象和性質(zhì),求出兩個函數(shù)的值域M與N,進而結合集合交集的定義,可得答案.
解答: 解:∵集合M={y|y=2x}={y|y>0},N={y|y=logx}=R,
故M∩N={y|y>0},
故選:C
點評:本題考查的知識點是集合的交集,并集,補集及其運算,難度不大,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知正三角形PAD,正方形ABCD,平面PAD⊥平面ABCD,E為PD的中點.
(1)求AD與CE所成角的余弦值;
(2)求直線AC與平面PCD所成的角的大小的正弦;
(3)求二面角B-PC-D的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)的定義域為{x|x≠0},f(x)>0.滿足f(x•y)=f(x)•f(y),且在區(qū)間(0,+∞)上單調(diào)遞增,若實數(shù)a滿足f(log2a)+f(log 
1
2
a)≤2f(1),則a的取值范圍是(  )
A、[1,2]
B、(0,
1
2
]
C、[
1
2
,1
﹚∪(1,2]
D、(0,1)∪(1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
ax+9
x+a
在區(qū)間(-2,+∞)上是增函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某扇形的圓心角為30°,半徑為2,那么該扇形弧長為( 。
A、
π
3
B、
2
3
π
C、
π
6
D、60

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三邊長a,b,c依次成等差數(shù)列,a2+b2+c2=21,則b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知ax2-2x>ax+4(a>0且a≠1),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
a
1
6
-b
1
6
a
1
2
-a3b
1
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三內(nèi)角A,B,C所對邊的長依次為a,b,c,若cosA=
3
4
,cosC=
1
8

(Ⅰ)求cos B的值;    
(Ⅱ)若|
AC
+
BC
|=
46
,求BC邊上中線的長.

查看答案和解析>>

同步練習冊答案