(12分)已知函數(shù)對于任意的滿足.
(1)求的值;
(2)求證:為偶函數(shù);
(3)若上是增函數(shù),解不等式

(1);
(2)證明:見解析;
(3)x∈[-1,0)∪(0,2]∪[3,5)∪(5,6]。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/bb/7/vn4qz.png" style="vertical-align:middle;" />的函數(shù)同時(shí)滿足:
①對于任意的,總有;         ②;
③若,則有成立。
的值;
的最大值;
若對于任意,總有恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)遞減函數(shù),
⑴求函數(shù)的解析式;
⑵討論函數(shù)的奇偶性。 (12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
判斷并證明函數(shù)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(附加題)本小題滿分10分
已知是定義在上單調(diào)函數(shù),對任意實(shí)數(shù)有:時(shí),.
(1)證明:;
(2)證明:當(dāng)時(shí),;
(3)當(dāng)時(shí),求使對任意實(shí)數(shù)恒成立的參數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(16分)已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí),
(1)當(dāng)時(shí),求函數(shù)的解析式;
(2)若函數(shù)為單調(diào)遞減函數(shù);
①直接寫出的范圍(不必證明);
②若對任意實(shí)數(shù),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司為了實(shí)現(xiàn)1000萬元利潤的目標(biāo),準(zhǔn)備制定一個(gè)激勵銷售人員的獎勵方案:在銷售利潤達(dá)到10萬元時(shí),按銷售利潤進(jìn)行獎勵,且獎金(單位:萬元)隨銷售利潤(單位:萬元)的增加而增加,但獎金總數(shù)不超過5萬元,同時(shí)獎金不能超過利潤的%.現(xiàn)有三個(gè)獎勵模型:,分析與推導(dǎo)哪個(gè)函數(shù)模型能符合該公司的要求?并給予證明.(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)上是減函數(shù),求函數(shù)上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
(1)求函數(shù)的定義域;
(2)求函數(shù)的值域;

查看答案和解析>>

同步練習(xí)冊答案