【題目】在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問(wèn)卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足120分的占,統(tǒng)計(jì)成績(jī)后得到如下列聯(lián)表:

分?jǐn)?shù)不少于120

分?jǐn)?shù)不足120

合計(jì)

線上學(xué)習(xí)時(shí)間不少于5小時(shí)

4

19

線上學(xué)習(xí)時(shí)間不足5小時(shí)

合計(jì)

45

1)請(qǐng)完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;

2)①按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);

②若將頻率視為概率,從全校高三該次檢測(cè)數(shù)學(xué)成績(jī)不少于120分的學(xué)生中隨機(jī)抽取20人,求這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)的期望和方差.

(下面的臨界值表供參考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式其中

【答案】1)填表見(jiàn)解析;有99%的把握認(rèn)為高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)2)①詳見(jiàn)解析②期望;方差

【解析】

1)完成列聯(lián)表,代入數(shù)據(jù)即可判斷;

2)利用分層抽樣可得的取值,進(jìn)而得到概率,列出分布列;根據(jù)分析知,計(jì)算出期望與方差.

1

分?jǐn)?shù)不少于120

分?jǐn)?shù)不足120

合計(jì)

線上學(xué)習(xí)時(shí)間不少于5小時(shí)

15

4

19

線上學(xué)習(xí)時(shí)間不足5小時(shí)

10

16

26

合計(jì)

25

20

45

99%的把握認(rèn)為高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”.

2)①由分層抽樣知,需要從不足120分的學(xué)生中抽取人,

的可能取值為0,1,23,4,

,,

,

所以,的分布列:

②從全校不少于120分的學(xué)生中隨機(jī)抽取1人,此人每周上線時(shí)間不少于5小時(shí)的概率為,設(shè)從全校不少于120分的學(xué)生中隨機(jī)抽取20人,這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)為,則

,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的圓心為,點(diǎn)是圓內(nèi)一個(gè)定點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線與半徑相交于點(diǎn).

1)求動(dòng)點(diǎn)的軌跡的方程;

2)給定點(diǎn),設(shè)直線不經(jīng)過(guò)點(diǎn)且與軌跡相交于,兩點(diǎn),以線段為直徑的圓過(guò)點(diǎn).證明:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx)為奇函數(shù),且當(dāng)x≥0時(shí),fx)=excosx,則不等式f2x1+fx2)>0的解集為( )

A.(﹣1B.(﹣,C.+∞D.1,+∞

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的右頂點(diǎn)為.左、右焦點(diǎn)分別為,過(guò)點(diǎn)且垂直于軸的直線交橢圓于點(diǎn)在第象限),直線的斜率為,與軸交于點(diǎn)

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)的直線與橢圓交于、兩點(diǎn)(不與、重合),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,的中點(diǎn),,.現(xiàn)將沿翻折至,得四棱錐.

1)證明:;

2)若,求直線與平面所成角的正切值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),對(duì)[0, π],都有,滿足f(x2)=0的實(shí)數(shù)x有且只有3個(gè),給出下述四個(gè)結(jié)論:①滿足題目條件的實(shí)數(shù)x0有且只有1個(gè);②滿足題目條件的實(shí)數(shù)x1有且只有1個(gè);③f(x)上單調(diào)遞增;④的取值范圍是;其中所有正確結(jié)論的編號(hào)是(

A.①③B.②④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)詩(shī)詞大會(huì)的播出引發(fā)了全民讀書(shū)熱,某學(xué)校語(yǔ)文老師在班里開(kāi)展了一次詩(shī)詞默寫(xiě)比賽,班里40名學(xué)生得分?jǐn)?shù)據(jù)的莖葉圖如右圖,若規(guī)定得分不低于85分的學(xué)生得到“詩(shī)詞達(dá)人”的稱號(hào),低于85分且不低于70分的學(xué)生得到“詩(shī)詞能手”的稱號(hào),其他學(xué)生得到“詩(shī)詞愛(ài)好者”的稱號(hào).根據(jù)該次比賽的成績(jī)按照稱號(hào)的不同進(jìn)行分層抽樣抽選10名學(xué)生,則抽選的學(xué)生中獲得“詩(shī)詞能手”稱號(hào)的人數(shù)為(  )

A. 6B. 5C. 4D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓,離心率,且經(jīng)過(guò)拋物線的焦點(diǎn).若過(guò)點(diǎn)的直線斜率不等于零與橢圓交于不同的兩點(diǎn)EB、F之間,

求橢圓的標(biāo)準(zhǔn)方程;

求直線l斜率的取值范圍;

面積之比為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體ABCDA1B1C1D1中,E、F、G分別為AA1BC、C1D1的中點(diǎn),現(xiàn)有下面三個(gè)結(jié)論:①△EFG為正三角形;②異面直線A1GC1F所成角為60°;③AC∥平面EFG.其中所有正確結(jié)論的編號(hào)是(

A.B.②③C.①②D.①③

查看答案和解析>>

同步練習(xí)冊(cè)答案