【題目】如圖,在四棱錐中,底面四邊形是矩形,平面,分別是的中點(diǎn),.
(1)求證:平面;
(2)求二面角的大;
(3)若,求直線與平面所成角的正弦值.
【答案】(1)證明見(jiàn)解析;(2)45°;(3).
【解析】試題分析:(1)取的中點(diǎn),要證平面,即證,構(gòu)造平行四邊形即可;(2)根據(jù)題意易知為二面角的平面角,求出即可;(3)易證平面,為直線與平面所成的角,即可求出直線與平面所成角的正弦值.
試題解析:
(1)證明:取的中點(diǎn),連接,
∵是的中點(diǎn),
∴,且,
∵四邊形是矩形,
∴,且,
∴,且,
又∵是的中點(diǎn),
∴,
∴,且,
∴四邊形是平行四邊形,
∴,
∵平面,平面
∴平面.
(2)∵平面,平面
∴ ,
∵四邊形是矩形,
∴ ,
∵ ,、平面,
∴平面,
又∵平面,
∴為二面角的平面角,
∵,
∴為等腰直角三角形
∴,即二面角的大小為.
(3)由(2)知,為等腰直角三角形
∵是斜邊的中點(diǎn),
∴,
由(1)知,,
∴,
又由(2)知,平面,平面,
∴ ,
∴ ,
又∵平面,
∴平面,
∴是直線在平面上的射影,
∴為直線與平面所成的角,
在中,,,
∴,
在等腰直角中,
∵是的中點(diǎn),
∴,
∴
∴,
即直線與平面所成角的正弦值為.
點(diǎn)睛:求直線與平面所成角問(wèn)題主要有兩個(gè)方法:
①定義法,在斜線上取一點(diǎn),過(guò)此點(diǎn)引平面的垂線,連接垂足與斜足得到射影,斜線與射影所夾較小角即線面角;
②等積法:直接求得斜線上一點(diǎn)到平面的距離,其與斜線段長(zhǎng)的比值即線面角的正弦值,關(guān)鍵求點(diǎn)到平面距離,往往利用等積法來(lái)求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方形中, , 為的中點(diǎn),將沿折起,使得平面平面,設(shè)點(diǎn)是線段上的一動(dòng)點(diǎn)(不與, 重合).
(Ⅰ)當(dāng)時(shí),求三棱錐的體積;
(Ⅱ)求證: 不可能與垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次函數(shù),分別從集合P和Q中隨機(jī)取一個(gè)數(shù)a和b得到數(shù)對(duì)。
(1)若,,求函數(shù)在內(nèi)是偶函數(shù)的概率;
(2)若,,求函數(shù)有零點(diǎn)的概率;
(3)若,,求函數(shù)在區(qū)間上是增函數(shù)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,且4sin2 ﹣cos2A=
(1)求角A的大小,
(2)若a= ,cosB= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足, ,其中.
(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對(duì)于恒成立,若存在,求出的最小值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中,正確的是( )
①兩個(gè)平面同時(shí)垂直第三個(gè)平面,則這兩個(gè)平面可能互相垂直
②方程 表示經(jīng)過(guò)第一、二、三象限的直線
③若一個(gè)平面中有4個(gè)不共線的點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面平行
④方程可以表示經(jīng)過(guò)兩點(diǎn)的任意直線
A. ②③ B. ①④ C. ①②④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、分別是橢圓的左頂點(diǎn)、右焦點(diǎn),點(diǎn)為橢圓上一動(dòng)點(diǎn),當(dāng)軸時(shí), .
(1)求橢圓的離心率;
(2)若橢圓存在點(diǎn),使得四邊形是平行四邊形(點(diǎn)在第一象限),求直線與的斜率之積;
(3)記圓為橢圓的“關(guān)聯(lián)圓”. 若,過(guò)點(diǎn)作橢圓的“關(guān)聯(lián)圓”的兩條切線,切點(diǎn)為、,直線的橫、縱截距分別為、,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,向量=( , ﹣1),=(cosA,sinA).若⊥ , 且αcosB+bcosA=csinC,則角A,B的大小分別為( 。
A.,
B.,
C.,
D.,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列為等比數(shù)列, ,公比,且成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè), ,求使的的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com