已知橢圓
的離心率為
,短軸的一個端點到右焦點的距離為2,
(1)試
求橢圓
的方程;
(2)若斜率為
的直線
與橢圓
交于
、
兩點,點
為橢圓
上一點,記直線
的斜率為
,直線
的斜率為
,試問:
是否為定值?請證明你的結(jié)論.
(1)
.
,橢圓
的方程為
……4分
(2)設(shè)直線
的方程為:
,
聯(lián)立直線
的方程與橢圓方程得:
(1)代入(2)得:
化簡得:
………(3) ……………6分
當
時,即,
即
時,直線
與橢圓有兩交點, ………………7分
由韋達定理得:
, ………………8分
所以,
,
………………10分
則
,
。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:填空題
在平面直角坐標系下,曲線
(
為參數(shù)),曲線
(
為參數(shù)).若曲線
、
有公共點,則實數(shù)
的取值范圍_____.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)如圖:
O方程為
,點
P在圓上,點
D在
x軸上,點
M在
DP延長線上,
O交
y軸于點
N,
.且
(I)求點
M的軌跡
C的方程;
(II)設(shè)
,若過
F1的直線交(I)中曲線
C于
A、
B兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知以點
C (
t,
)(
t∈R),
t≠0)為圓心的圓與
x軸交于點
O,
A,與
y軸交于點
O,
B,其中
O為坐標原點.
(1)求證:
△OAB的面積為定值;
(2)設(shè)直線
y= –2
x+4與圓
C交于點
M,
N若|
OM|=|
ON|,求圓
C的方程.
(3)若
t>0,當圓
C的半徑最小時,圓
C上至少有三個不同的點到直線
l:
y –
的距離為
,求直線
l的斜率
k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
△ABC中,A(-2,0),B(2,0),則滿足△ABC的周長為8的點C的軌跡方程為
_______。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
給出下列3個命題:①在平面內(nèi),若動點
M到
、
兩點的距離之和等于2,則動點
M的軌跡是橢圓;②在平面內(nèi),給出點
、
,若動點
P滿足
,則動點
P的軌跡是雙曲線;③在平面內(nèi),若動點
Q到點
和到直線
的距離相等,則動點
Q的軌跡是拋物線。其中正確的命題有( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知動點
P在曲線
上移動,則點
A(0,– 1)與點
P連線中點的軌跡方程是_____________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分15分) 已知拋物線C的頂點在原點, 焦點為F(0,1).
(1) 求拋物線C的方程;
(2)在拋物線C上是否存在點P, 使得過點P
的直線交C于另一點Q,滿足PF⊥QF, 且
PQ與C在點P處的切線垂直.若存在,求出
點P的坐標; 若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
.(本小題滿分12分)
在△ABC中,頂點A(-1,0),B(1,0),動點D,E滿足:
①
;②|
|=
|
|=
|
|③
與
共線.
(Ⅰ)求△ABC頂點C的軌跡方程;
(Ⅱ) 若斜率為1直線
l與動點C的軌跡交于M,N兩點,且
·
=0,求直線
l的方程.
查看答案和解析>>