(本題滿分12分)如圖:O方程為,點(diǎn)P在圓上,點(diǎn)Dx軸上,點(diǎn)MDP延長(zhǎng)線上,Oy軸于點(diǎn)N,.且
(I)求點(diǎn)M的軌跡C的方程;
(II)設(shè),若過(guò)F1的直線交(I)中曲線CAB兩點(diǎn),求的取值范圍.

(I)設(shè),
  ……………………………3分
代入      …………………………………………5分
(II)①當(dāng)直線AB的斜率不存在時(shí),顯然;  ……………………6分
②當(dāng)直線AB的斜率存在時(shí),不妨設(shè)AB的方程為: 
  
不妨設(shè) 則:


…8分
  ……10分

       ……………………………………………………11分
綜上所述的范圍是   ………………………………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過(guò)點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存過(guò)點(diǎn)(2,1)的直線與橢圓相交于不同的兩點(diǎn),滿足?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓內(nèi)有圓,如果圓的切線與橢圓交A、B兩點(diǎn),且滿足(其中為坐標(biāo)原點(diǎn)).
(1)求證:為定值;
(2)若達(dá)到最小值,求此時(shí)的橢圓方程;
(3)在滿足條件(2)的橢圓上是否存在點(diǎn)P,使得從P向圓所引的兩條切線互相垂直,如果存在,求出點(diǎn)的坐標(biāo),如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左焦點(diǎn),若橢圓上存在一點(diǎn),滿足以橢圓短軸為直徑的圓與線段相切于線段的中點(diǎn)
(Ⅰ)求橢圓的方程;
(Ⅱ)已知兩點(diǎn)及橢圓:,過(guò)點(diǎn)作斜率為的直線交橢圓兩點(diǎn),設(shè)線段的中點(diǎn)為,連結(jié),試問(wèn)當(dāng)為何值時(shí),直線過(guò)橢圓的頂點(diǎn)?
(Ⅲ) 過(guò)坐標(biāo)原點(diǎn)的直線交橢圓:、兩點(diǎn),其中在第一象限,過(guò)軸的垂線,垂足為,連結(jié)并延長(zhǎng)交橢圓,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,,點(diǎn)滿足,記點(diǎn)的軌跡為,過(guò)點(diǎn)作直線與軌跡交于兩點(diǎn),過(guò)作直線的垂線、,垂足分別為,。
(1)求軌跡的方程;
(2)設(shè)點(diǎn),求證:當(dāng)取最小值時(shí),的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為2,
(1)試求橢圓的方程;
(2)若斜率為的直線與橢圓交于兩點(diǎn),點(diǎn)為橢圓上一點(diǎn),記直線的斜率為,直線的斜率為,試問(wèn):是否為定值?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的中心在坐標(biāo)原點(diǎn),其中一個(gè)焦點(diǎn)為圓的圓心,右頂點(diǎn)是圓F與x軸的一個(gè)交點(diǎn).已知橢圓與直線相交于A、B兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)求面積的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線y=x2-x與x軸圍成的圖形的面積為
A.B.1C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若拋物線的焦點(diǎn)與橢圓的左焦點(diǎn)重合,則的值為_(kāi)________

查看答案和解析>>

同步練習(xí)冊(cè)答案