【題目】某桶裝水經(jīng)營(yíng)部每天的房租,人員工資等固定成本為200元,每桶水的進(jìn)價(jià)是5元,銷(xiāo)售價(jià)(元)與日均銷(xiāo)售量(桶)的關(guān)系如下表,為了收費(fèi)方便,經(jīng)營(yíng)部將銷(xiāo)售價(jià)定為整數(shù),并保持經(jīng)營(yíng)部每天盈利.
6 | 7 | 8 | 9 | 10 | 11 | 12 | … | |
480 | 440 | 400 | 360 | 320 | 280 | 240 | … |
(1)寫(xiě)出的值,并解釋其實(shí)際意義;
(2)求表達(dá)式,并求其定義域;
(3)求經(jīng)營(yíng)部利潤(rùn)表達(dá)式,請(qǐng)問(wèn)經(jīng)營(yíng)部怎樣定價(jià)才能獲得最大利潤(rùn)?
【答案】(1),實(shí)際意義表示價(jià)格每上漲1元,銷(xiāo)售量減少40桶.
(2),,;
(3)經(jīng)營(yíng)部將價(jià)格定在11元或12元時(shí),才能獲得最大利潤(rùn).
【解析】
(1)根據(jù)題意計(jì)算即可,表示價(jià)格每上漲1元,銷(xiāo)售量減少40桶(2)設(shè),由待定系數(shù)法求解即可(3)由題意獲利為,利用二次函數(shù)求最值即可.
(1)由表格數(shù)據(jù)可知
實(shí)際意義表示價(jià)格每上漲1元,銷(xiāo)售量減少40桶.
(2)由(1)知:設(shè)
則解得:,
即,,
(3)設(shè)經(jīng)營(yíng)部獲得利潤(rùn)元,
由題意得
當(dāng)時(shí),有最大值,但
∴當(dāng)或時(shí),取得最大值.
答:經(jīng)營(yíng)部將價(jià)格定在11元或12元時(shí),才能獲得最大利潤(rùn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系. 直線(xiàn)的極坐標(biāo)方程是.
(Ⅰ)求圓的極坐標(biāo)方程和直線(xiàn)的直角坐標(biāo)方程;
(Ⅱ)射線(xiàn)與圓的交點(diǎn)為,與直線(xiàn)的交點(diǎn)為,求線(xiàn)段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“克拉茨猜想”又稱(chēng)“猜想”,是德國(guó)數(shù)學(xué)家洛薩克拉茨在1950年世界數(shù)學(xué)家大會(huì)上公布的一個(gè)猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘3加1,不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,最終都能夠得到1.己知正整數(shù)經(jīng)過(guò)6次運(yùn)算后得到1,則的值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠,兩條相互獨(dú)立的生產(chǎn)線(xiàn)生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過(guò)日常監(jiān)控得知,生產(chǎn)線(xiàn)生產(chǎn)的產(chǎn)品為合格品的概率分別為和.
(1)從,生產(chǎn)線(xiàn)上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.
(2)假設(shè)不合格的產(chǎn)品均可進(jìn)行返工修復(fù)為合格品,以(1)中確定的作為的值.
①已知,生產(chǎn)線(xiàn)的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回?fù)p失元和元。若從兩條生產(chǎn)線(xiàn)上各隨機(jī)抽檢件產(chǎn)品,以挽回?fù)p失的平均數(shù)為判斷依據(jù),估計(jì)哪條生產(chǎn)線(xiàn)挽回的損失較多?
②若最終的合格品(包括返工修復(fù)后的合格品)按照一、二、三等級(jí)分類(lèi)后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線(xiàn)的最終合格品中各隨機(jī)抽取件進(jìn)行檢測(cè),結(jié)果統(tǒng)計(jì)如下圖;用樣本的頻率分布估計(jì)總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤(rùn)為,求的分布列并估算該廠產(chǎn)量件時(shí)利潤(rùn)的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①函數(shù)是奇函數(shù);
②將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖像;
③若是第一象限角且,則;
④是函數(shù)的圖像的一條對(duì)稱(chēng)軸;
⑤函數(shù)的圖像關(guān)于點(diǎn)中心對(duì)稱(chēng)。
其中,正確的命題序號(hào)是______________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:()的左右頂點(diǎn)分別為,,點(diǎn)在橢圓上,且的面積為.
(1)求橢圓的方程;
(2)設(shè)直線(xiàn)不經(jīng)過(guò)點(diǎn)且與橢圓交于,兩點(diǎn),若直線(xiàn)與直線(xiàn)的斜率之積為,證明:直線(xiàn)過(guò)頂點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地西紅柿從2月1號(hào)起開(kāi)始上市,通過(guò)市場(chǎng)調(diào)查,得到西紅柿種植成本(單位:元/100)與上市時(shí)間(距2月1日的天數(shù),單位:天)的數(shù)據(jù)如下表:
時(shí)間 | 50 | 110 | 250 |
成本 | 150 | 108 | 150 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)函數(shù)描述西紅柿種植成本與上市時(shí)間的變化關(guān)系:;
(2)利用(1)中選取的函數(shù),求西紅柿種植成本最低時(shí)的上市天數(shù)及最低種植成本.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在區(qū)間上的函數(shù)y=f(x)的圖象關(guān)于直線(xiàn)x=-對(duì)稱(chēng),當(dāng)x∈時(shí),函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示.
(1)求函數(shù)y=f(x)在上的表達(dá)式;
(2)求方程f(x)=的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某盒子中共有個(gè)小球,編號(hào)為號(hào)至號(hào),其中有個(gè)紅球、個(gè)黃球和個(gè)綠球,這些球除顏色和編號(hào)外完全相同.
(1)若從盒中一次隨機(jī)取出個(gè)球,求取出的個(gè)球中恰有個(gè)顏色相同的概率;
(2)若從盒中逐一取球,每次取后立即放回,共取次,求恰有次取到黃球的概率;
(3)若從盒中逐一取球,每次取后不放回,記取完黃球所需次數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com