精英家教網 > 高中數學 > 題目詳情

【題目】在以ABCDEF為頂點的五面體中,底面ABCD為菱形,∠ABC120°,ABAEED2EF,EFAB,點GCD中點,平面EAD⊥平面ABCD.

1)證明:BDEG;

2)若三棱錐,求菱形ABCD的邊長.

【答案】1)詳見解析;(2.

【解析】

1)取中點,連,可得,結合平面EAD⊥平面ABCD,可證

平面ABCD,進而有,再由底面是菱形可得,可得,

可證得平面,即可證明結論;

2)設底面邊長為,由EFAB,AB2EF,求出體積,建立的方程,即可求出結論.

1)取中點,連

底面ABCD為菱形,,

,平面EAD⊥平面ABCD,

平面平面平面

平面平面,

底面ABCD為菱形,,

中點,,

平面

平面平面;

2)設菱形ABCD的邊長為,則,

,

,

,

,所以菱形ABCD的邊長為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為了了解某校學生課外時間的分配情況,擬采用分層抽樣的方法從該校的高一、高二、高三這三個年級中共抽取5個班進行調查,已知該校的高一、高二、高三這三個年級分別有18、6、6個班級.

(Ⅰ)求分別從高一、高二、高三這三個年級中抽取的班級個數;

(Ⅱ)若從抽取的5個班級中隨機抽取2個班級進行調查結果的對比,求這2個班級中至少有1個班級來自高一年級的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國南宋數學家楊輝1261年所著的《詳解九章算法》一書里出現了如圖所示的表,即楊輝三角,這是數學史上的一個偉大成就.楊輝三角中,第行的所有數字之和為,若去除所有為1的項,依次構成數列,則此數列的前55項和為( )

A. 4072B. 2026C. 4096D. 2048

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中正確的是(

A.直線與直線相互平行的充分不必條件

B.直線垂直平面內無數條直線直線垂直于平面的充分條件

C.已知、、為非零向量,則的充要條件

D.:存在.:任意,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖的程序框圖中,若輸入,,則輸出的值是( )

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]

A. 3 B. 7 C. 11 D. 33

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數.

1)討論函數的單調性;

2)若關于x的方程有唯一的實數解,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,圓的參數方程為為參數),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.

1)求圓的普通方程和直線的直角坐標方程;

2)設是直線上任意一點,過作圓切線,切點為,,求四邊形(點為圓的圓心)面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為常數).

1)討論函數的單調性;

2)若為整數,函數恰好有兩個零點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線的參數方程是為參數),曲線的參數方程是為參數).

(Ⅰ)將曲線的參數方程化為普通方程;

(Ⅱ)求曲線上的點到曲線的距離的最大值和最小值.

查看答案和解析>>

同步練習冊答案