【題目】如圖,在三棱錐中,平面平面, 為等邊三角形, 且, 分別為的中點.
(1)求證: 平面.
(2)求證:平面平面.
(3)求三棱錐的體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]上單調(diào)遞增,則φ的取值范圍是( )
A.[ , ]
B.[ , )
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面有命題:
①y=|sinx-|的周期是2π;
②y=sinx+sin|x|的值域是[0,2] ;
③方程cosx=lgx有三解;
④為正實數(shù),在上遞增,那么的取值范圍是;
⑤在y=3sin(2x+)中,若f(x)=f(x2)=0,則x1-x2必為的整數(shù)倍;
⑥若A、B是銳角△ABC的兩個內(nèi)角,則點P(cosB-sinA,sinB-cosA)在第二象限;
⑦在中,若,則鈍角三角形。
其中真命題個數(shù)為( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)是定義在實數(shù)集上的奇函數(shù),并且在區(qū)間上是單調(diào)遞增的函數(shù).
(1)研究并證明函數(shù)在區(qū)間上的單調(diào)性;
(2)若實數(shù)滿足不等式,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M: 和點 ,動圓P經(jīng)過點N且與圓M相切,圓心P的軌跡為曲線E.
(1)求曲線E的方程;
(2)點A是曲線E與x軸正半軸的交點,點B,C在曲線E上,若直線AB,AC的斜率分別是k1 , k2 , 滿足k1k2=9,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為奇函數(shù),且實數(shù)。
(1)求的值;
(2)判斷函數(shù)在的單調(diào)性,并寫出證明過程;
(3)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求異面直線AC1與B1C所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1(﹣c,0)、F2(c,0)分別是橢圓G: 的左、右焦點,點M是橢圓上一點,且MF2⊥F1F2 , |MF1|﹣|MF2|= a.
(1)求橢圓G的方程;
(2)若斜率為1的直線l與橢圓G交于A、B兩點,以AB為底作等腰三角形,頂點為P(﹣3,2),求△PAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(Ⅰ)求角A的大;
(Ⅱ)若△ABC的面積S=5 ,b=5,求sinBsinC的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com