【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?
【答案】答案見解析.
【解析】試題分析:
由所給的頻率分布直方圖知,“體育迷”人數(shù)為25.“非體育迷”人數(shù)為75,據(jù)此完成2×2列聯(lián)表即可,結(jié)合列聯(lián)表計算觀測值可得,故在犯錯誤的概率不超過0.10的前提下可以認(rèn)為“體育迷”與性別有關(guān).
試題解析:
由所給的頻率分布直方圖知,
“體育迷”人數(shù)為100×(10×0.020+10×0.005)=25.
“非體育迷”人數(shù)為75,則據(jù)題意完成2×2列聯(lián)表:
將2×2列聯(lián)表的數(shù)據(jù)代入公式計算:
K2=≈3.030>2.706.
所以在犯錯誤的概率不超過0.10的前提下可以認(rèn)為“體育迷”與性別有關(guān).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點為原點,極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標(biāo)方程和曲線的普通方程;
(2)若曲線為曲線關(guān)于直線的對稱曲線,點分別為曲線、曲線上的動點,點坐標(biāo)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線()與軸交于點,動圓與直線相切,并且與圓相外切,
(1)求動圓的圓心的軌跡的方程;
(2)若過原點且傾斜角為的直線與曲線交于兩點,問是否存在以為直徑的圓經(jīng)過點?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在上是增函數(shù),求實數(shù)的取值范圍;
(2)若存在實數(shù)使得關(guān)于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點時,定義P的“伴隨點”為P′( , );當(dāng)P是原點時,定義P的“伴隨點“為它自身,平面曲線C上所有點的“伴隨點”所構(gòu)成的曲線C′定義為曲線C的“伴隨曲線”.現(xiàn)有下列命題:
①若點A的“伴隨點”是點A′,則點A′的“伴隨點”是點A;
②單位圓的“伴隨曲線”是它自身;
③若曲線C關(guān)于x軸對稱,則其“伴隨曲線”C′關(guān)于y軸對稱;
④一條直線的“伴隨曲線”是一條直線.
其中的真命題是(寫出所有真命題的序列).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,傾斜角為α的直線l的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρcos2θ-4sin θ=0.
(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)已知點P(1,0).若點M的極坐標(biāo)為,直線l經(jīng)過點M且與曲線C相交于A,B兩點,設(shè)線段AB的中點為Q,求|PQ|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項均不為零的數(shù)列{an},定義向量 , ,n∈N* . 下列命題中真命題是( )
A.若?n∈N*總有 ∥ 成立,則數(shù)列{an}是等差數(shù)列
B.若?n∈N*總有 ∥ 成立,則數(shù)列{an}是等比數(shù)列
C.若?n∈N*總有 ⊥ 成立,則數(shù)列{an}是等差數(shù)列
D.若?n∈N*總有 ⊥ 成立,則數(shù)列{an}是等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合.對于的一個子集,若存在不大于的正整數(shù),使得對于中的任意一對元素,都有,則稱具有性質(zhì).
(Ⅰ)當(dāng)時,試判斷集合和是否具有性質(zhì)?并說明理由.
(Ⅱ)若時,
①若集合具有性質(zhì),那么集合是否一定具有性質(zhì)?并說明理由;
②若集合具有性質(zhì),求集合中元素個數(shù)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com