【題目】給出的是2017年11月-2018年11月某工廠工業(yè)原油產(chǎn)量的月度走勢圖,則以下說法正確的是( )
A. 2018年11月份原油產(chǎn)量約為51.8萬噸
B. 2018年11月份原油產(chǎn)量相對2017年11月增加1.0%
C. 2018年11月份原油產(chǎn)量比上月減少54.9萬噸
D. 2018年1-11月份原油的總產(chǎn)量不足15000萬噸
【答案】C
【解析】
根據(jù)題中數(shù)據(jù),逐項判斷即可得出結(jié)果.
由題意得,2018年11月份原油的日均產(chǎn)量為51.8噸,則11月份原油產(chǎn)量為萬噸.10月份原油產(chǎn)量為萬噸,故錯誤;2018年11月份原油產(chǎn)量的同比增速為-1.0%,原油產(chǎn)量相對2017年11月份減少1.0%,則錯誤;又11月份原油產(chǎn)量比上月減少1608.9-1554=54.9萬噸,則正確;1-11月份共334天,而1-11月份日均原油產(chǎn)量都超過50萬噸,故1-11月份原油產(chǎn)量的總產(chǎn)量會超過15000萬噸,故錯誤.
故選.
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有一場專家報告會,張老師帶甲,乙,丙,丁四位同學參加,其中有一個特殊位置可與專家近距離交流,張老師看出每個同學都想去坐這個位置,因此給出一個問題,誰能猜對,誰去坐這個位置.問題如下:某班10位同學參加一次全年級的高二數(shù)學競賽,最后一道題只有6名同學,,,,,嘗試做了,并且這6人中只有1人答對了.聽完后,四個同學給出猜測如下:甲猜:或答對了;乙猜:不可能答對;丙猜:,,當中必有1人答對了;丁猜:,,都不可能答對,在他們回答完后,張老師說四人中只有1人猜對,則張老師把特殊位置給了__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年非洲豬瘟在東北三省出現(xiàn),為了進行防控,某地生物醫(yī)藥公司派出技術(shù)人員對當?shù)匾火B(yǎng)豬場提供技術(shù)服務(wù),收費標準是:每天公司收取養(yǎng)豬場技術(shù)服務(wù)費120元,當天若需要用藥的豬不超過45頭,不另外收費,若需要用藥的豬超過45頭,超過部分每頭收取藥費8元.
(1)設(shè)醫(yī)藥公司日收費為(單位:元),每天需要用藥的豬的數(shù)量為(單位:頭),,試寫出醫(yī)藥公司日收取的費用關(guān)于的函數(shù)關(guān)系式;
(2)若該醫(yī)藥公司從10月1日起對該養(yǎng)豬場提供技術(shù)服務(wù),10月31日該養(yǎng)豬場對其中一個豬舍9月份和10月份豬的發(fā)病數(shù)量進行了統(tǒng)計,得到如下列聯(lián)表.
9月份 | 10月份 | 合計 | |
未發(fā)病 | 40 | 85 | 125 |
發(fā)病 | 65 | 20 | 85 |
合計 | 105 | 105 | 210 |
根據(jù)以上列聯(lián)表,判斷是否有99.9%的把握認為豬未發(fā)病與醫(yī)藥公司提供技術(shù)服務(wù)有關(guān)?
附:,其中.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義個數(shù)的“倒均值”.
(1)若數(shù)列的前項,的“倒均值”. 求的通項公式
(2)在(1)的條件下,令,試研究數(shù)列的單調(diào)性,并給出證明.
(3)在(2)的條件下,設(shè)函數(shù),對于數(shù)列,是否存在實數(shù),使得當時,對任意恒成立?若存在,求出在最小的實數(shù),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)年的純利潤為萬元,因設(shè)備老化等原因,企業(yè)的生產(chǎn)能力將逐年下降,若不進行技術(shù)改造,預測從今年(年)起每年比上一年純利潤減少萬元,今年初該企業(yè)一次性投入資金萬元進行技術(shù)改造,預計在未扣除技術(shù)改造資金的情況下,第年(今年為第一年)的利潤為萬元(為正整數(shù)).
(1)設(shè)從今年起的前年,若該企業(yè)不進行技術(shù)改造的累計純利潤為萬元,進行技術(shù)改造后的累計純利潤為萬元(須扣除技術(shù)改造資金),求,的表達式;
(2)以上述預測,從今年起該企業(yè)至少經(jīng)過多少年后,進行技術(shù)改造后的累計純利潤超過不進行技術(shù)改造的累計純利潤?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐(如圖1)的平面展開圖(如圖2)中,四邊形為邊長為的正方形,,均為正三角形,在三棱錐中.
(1)求證:平面平面;
(2)若點在棱上,滿足,,點在棱上,且,求得取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com