12.已知角θ的終邊經(jīng)過點(diǎn)P(3,4),則下面正確的是( 。
A.sinθ=$\frac{3}{5}$B.cos θ=$\frac{4}{5}$C.cotθ=$\frac{3}{4}$D.secθ=$\frac{5}{4}$

分析 利用三角函數(shù)的定義,即可得出結(jié)論.

解答 解:由題意,x=3,y=4,r=5,
∴sinθ=$\frac{4}{5}$,cosθ=$\frac{3}{5}$,cotθ=$\frac{3}{4}$,secθ=$\frac{5}{3}$,
故選:C.

點(diǎn)評(píng) 本題考查三角函數(shù)的定義,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a,b,m∈R,則下面推理中正確的是(  )
A.a>b⇒$\frac{a}$>1B.a>b⇒am2>bm2
C.a3>b3,ab>0⇒$\frac{1}{a}$<$\frac{1}$D.a2>b2,ab>0⇒$\frac{1}{a}$<$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)角α的終邊經(jīng)過點(diǎn)(-6,-8),則sinα-cosα的值是( 。
A.-$\frac{7}{5}$B.$\frac{7}{5}$C.$\frac{1}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某工廠制造甲、乙兩種產(chǎn)品,已知制造1t甲產(chǎn)品要用煤9t,電力4kW,勞動(dòng)力(按工作日計(jì)算)3個(gè);制造1t乙產(chǎn)品要用煤4t,電力5kW,勞動(dòng)力10個(gè).又知制成甲產(chǎn)品1t可獲利7萬元,制成乙產(chǎn)品1t可獲利12萬元.現(xiàn)在此工廠只有煤360t,電力200kW,勞動(dòng)力300個(gè),在這種條件下應(yīng)生產(chǎn)甲、乙兩種產(chǎn)品各多少噸能獲得最大經(jīng)濟(jì)效益?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知sinβ=-$\frac{12}{13}$,cosβ=$\frac{5}{13}$,則角α終邊所在的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),對(duì)給定的a(0<a<1),數(shù)ua由P(X>ua)=α確定,若P(|X|<x)=α,則x等于( 。
A.u${\;}_{\frac{a}{2}}$B.u${\;}_{1-\frac{a}{2}}$C.u${\;}_{\frac{1-a}{2}}$D.u1-a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,有一塊半徑為2的半圓形空地,計(jì)劃綠化成等腰梯形ABCD形狀的草坪,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上,設(shè)草坪ABCD的周長為y.
(1)若CD=2,求草坪ABCD的面積;
(2)若CD=x,寫出y關(guān)于x的函數(shù)解析式,并求出它的定義域;
(3)當(dāng)CD為何值時(shí),y的值最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知二次函數(shù)f(x)=ax2+bx+c,若f(0)=f(6)<f(7),則f(x)在( 。
A.(-∞,0)上是增函數(shù)B.(0,+∞)上是增函數(shù)C.(-∞,3)上是增函數(shù)D.(3,+∞)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)全集U=R,A={x|x(x-2)<0},B={x|y=$\sqrt{1-x}$},則圖中陰影部分表示的集合為( 。
A.{x|0<x≤1}B.{x|1<x<2}C.{x|x≤1}D.{x|1≤x<2}

查看答案和解析>>

同步練習(xí)冊(cè)答案