【題目】設(shè)集合,若AB=B,求的取值范圍

【答案】a=1或a≤﹣1

【解析】試題分析:先由題設(shè)條件求出集合A,再由A∩B=B,導(dǎo)出集合B的可能結(jié)果,然后結(jié)合根的判別式確定實(shí)數(shù)a的取值范圍.

試題解析:

根據(jù)題意,集合A={x|x2+4x=0}={0,﹣4},若A∩B=B,則B是A的子集,

且B={x|x2+2(a+1)x+a2﹣1=0},為方程x2+2(a+1)x+a2﹣1=0的解集,

分4種情況討論:

①B=,△=[2(a+1)]2﹣4(a2﹣1)=8a+8<0,即a<﹣1時(shí),方程無解,滿足題意;

②B={0},即x2+2(a+1)x+a2﹣1=0有兩個(gè)相等的實(shí)根0,

則有a+1=0且a2﹣1=0,解可得a=﹣1,

③B={﹣4},即x2+2(a+1)x+a2﹣1=0有兩個(gè)相等的實(shí)根﹣4,

則有a+1=4且a2﹣1=16,此時(shí)無解,

④B={0、﹣4},即x2+2(a+1)x+a2﹣1=0有兩個(gè)的實(shí)根0或﹣4,

則有a+1=2且a2﹣1=0,解可得a=1,

綜合可得:a=1或a≤﹣1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與圓關(guān)于直線對(duì)稱.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)已知點(diǎn),若與直線垂直的直線與圓交于不同兩點(diǎn)、,且是鈍角,求直線軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心為的圓過點(diǎn),且與直線相切于點(diǎn)

1)求圓的方程;

2)已知點(diǎn),且對(duì)于圓上任一點(diǎn),線段上存在異于點(diǎn)的一點(diǎn),使得為常數(shù)),試判斷使的面積等于4的點(diǎn)有幾個(gè),并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);

2)若函數(shù)處取得極值,且對(duì)任意, 恒成立,求實(shí)數(shù)的取值范圍;

3)當(dāng)時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sinx,1), =( Acosx, cos2x)(A>0),函數(shù)f(x)= 的最大值為6.
(1)求A;
(2)將函數(shù)y=f(x)的圖象像左平移 個(gè)單位,再將所得圖象各點(diǎn)的橫坐標(biāo)縮短為原來的 倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象.求g(x)在[0, ]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對(duì)他們的射箭水平進(jìn)行測(cè)試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8

(1)計(jì)算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標(biāo)準(zhǔn)差;

(2)比較兩個(gè)人的成績,然后決定選擇哪名學(xué)生參加射箭比賽.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

(1)若a=1,求Cl的交點(diǎn)坐標(biāo);

(2)若C上的點(diǎn)到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱柱ABC﹣A1B1C1中,底面邊長和側(cè)棱長都相等,∠BAA1=∠CAA1=60°,則異面直線AB1與BC1所成角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:

將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?

非體育迷

體育迷

合計(jì)

10

55

合計(jì)


(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X)

P( K2≥k)

0.05

0.01

k

3.841

6.635

查看答案和解析>>

同步練習(xí)冊(cè)答案