【題目】已知函數(shù).

(1)解不等式

(2)若函數(shù),其中為奇函數(shù),為偶函數(shù),若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)(1,3);(2) .

【解析】

(1)設(shè)t=2x,利用fx)>16﹣9×2x,轉(zhuǎn)化不等式為二次不等式,求解即可;

(2)利用函數(shù)的奇偶性以及函數(shù)恒成立,結(jié)合對(duì)勾函數(shù)的圖象與性質(zhì)求解函數(shù)的最值,推出結(jié)果.

解:(1)設(shè)t=2x,由f(x)>16﹣9×2x得:t﹣t2>16﹣9t,

t2﹣10t+16<0

∴2<t<8,即2<2x<8,∴1<x<3

不等式的解集為(1,3).

(2) 由題意得

解得.

2ag(x)+h(2x)≥0,即,對(duì)任意x[1,2]恒成立,

x[1,2]時(shí),令,

上單調(diào)遞增,

當(dāng)時(shí),有最大值,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx)=x3ax2bx+1的導(dǎo)數(shù)滿足,其中常數(shù)abR.

(1)求曲線yfx)在點(diǎn)(1,f(1))處的切線方程;

(2)設(shè),求函數(shù)gx)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面ABCD為菱形,,QAD的中點(diǎn).

,求證:平面PQB平面PAD

若平面APD平面ABCD,且,點(diǎn)M在線段PC上,試確定點(diǎn)M的位置,使二面角的大小為,并求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x3+ax2+bx+c.
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)設(shè)a=b=4,若函數(shù)f(x)有三個(gè)不同零點(diǎn),求c的取值范圍;
(3)求證:a2﹣3b>0是f(x)有三個(gè)不同零點(diǎn)的必要而不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列敘述:

①化簡(jiǎn)的結(jié)果為﹣

②函數(shù)y=在(﹣∞,﹣1)和(﹣1,+∞)上是減函數(shù);

③函數(shù)y=log3x+x2﹣2在定義域內(nèi)只有一個(gè)零點(diǎn);

④定義域內(nèi)任意兩個(gè)變量x1,x2,都有,則f(x)在定義域內(nèi)是增函數(shù).

其中正確的結(jié)論序號(hào)是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD與ADEF為平行四邊形,M,N,G分別是AB,AD,EF的中點(diǎn)求證:

1BE平面DMF;

2平面BDE平面MNG

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)為1,Sn為數(shù)列{an}的前n項(xiàng)和,Sn+1=qSn+1,其中q>0,n∈N+
(1)若a2 , a3 , a2+a3成等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)雙曲線x2 =1的離心率為en , 且e2=2,求e12+e22+…+en2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分12分)已知函數(shù)(R).

1)當(dāng)取什么值時(shí),函數(shù)取得最大值,并求其最大值;

2)若為銳角,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)已知, (其中是自然對(duì)數(shù)的底數(shù)), 求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案