【題目】如圖,四棱錐中,底面ABCD為菱形,,QAD的中點.

,求證:平面PQB平面PAD;

若平面APD平面ABCD,且,M在線段PC上,試確定點M的位置,使二面角的大小為,并求出的值.

【答案】1證明過程詳見解析;2.

【解析】

試題分析:本題主要以四棱錐為幾何背景,考查線線垂直、線面垂直、面面垂直、向量法等基礎(chǔ)知識,考查學生的空間想象能力、邏輯推理能力、計算能力.第一問,為等腰三角形,Q為AD中點,所以,又由于底面ABCD為菱形,得到,利用線面垂直的判定得到平面PQB,最后利用面面垂直的判定得到結(jié)論;第二問,利用面面垂直的性質(zhì)得到兩兩垂直關(guān)系,建立空間直角坐標系,寫出面內(nèi)所有點的坐標,得到向量坐標

試題解析:1,QAD的中點,,

底面ABCD為菱形,, ,

平面PQB,又平面PAD,

平面PQB平面PAD;

2平面PAD平面ABCD,平面平面,平面ABCD.

Q為坐標原點,分別以QA,QB,QPx,y,z軸建立空間直角坐標系如圖.

,

設(shè),

所以,平面CBQ的一個法向量是

設(shè)平面MQB的一個法向量為,所以

,

由二面角大小為,可得:

,解得,此時.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線關(guān)于軸對稱,頂點在坐標原點,直線經(jīng)過拋物線的焦點.

(1)求拋物線的標準方程;

(2)若不經(jīng)過坐標原點的直線與拋物線相交于不同的兩點, ,且滿足,證明直線軸上一定點,并求出點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最大值與最小值之和為a2+a+1(a>1).

(1)求a的值;

(2)判斷函數(shù)gx)=fx)-3在[1,2]的零點的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得如圖柱狀圖:
以這100臺機器更換的易損零件數(shù)的頻率代替1臺機器更換的易損零件數(shù)發(fā)生的概率,記X表示2臺機器三年內(nèi)共需更換的易損零件數(shù),n表示購買2臺機器的同時購買的易損零件數(shù).

(1)求X的分布列;
(2)若要求P(X≤n)≥0.5,確定n的最小值;
(3)以購買易損零件所需費用的期望值為決策依據(jù),在n=19與n=20之中選其一,應(yīng)選用哪個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]
在直線坐標系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù),a>0).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4cosθ.
(1)說明C1是哪一種曲線,并將C1的方程化為極坐標方程;
(2)直線C3的極坐標方程為θ=α0 , 其中α0滿足tanα0=2,若曲線C1與C2的公共點都在C3上,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建坐標系,已知曲線,已知過點的直線的參數(shù)方程為:t為參數(shù)),直線與曲線C分別交于MN

)寫出曲線C和直線的普通方程;

)若成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解某市開展群眾體育活動的情況,擬采用分層抽樣的方法從AB、C三個區(qū)抽取5個工廠進行調(diào)查.已知這三個區(qū)分別有9,18,18個工廠.

(1)求從A、B、C三個區(qū)中分別抽取的工廠的個數(shù);

(2)若從抽得的5個工廠中隨機地抽取2個進行調(diào)查結(jié)果的比較,計算這2個工廠中至少有一個來自C區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)解不等式;

(2)若函數(shù),其中為奇函數(shù),為偶函數(shù),若不等式對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M的方程為x 2+y-22=1,直線l的方程為x-2y=0,點P在直線l上,過P點作圓M的切線PA,PB,切點為A,B

1APB=60°,試求點P的坐標;

2若P點的坐標為2,1,過P作直線與圓M交于C,D兩點,當時,求直線CD的方程;

3求證:經(jīng)過A,P,M三點的圓必過定點,并求出所有定點的坐標

查看答案和解析>>

同步練習冊答案