下列各點(diǎn)不在x+y-1>0表示的平面區(qū)域的是( 。
A、(1,2)
B、(0,0)
C、(0,2)
D、(2,0)
考點(diǎn):二元一次不等式(組)與平面區(qū)域
專(zhuān)題:不等式的解法及應(yīng)用
分析:分別將點(diǎn)的坐標(biāo)代入不等式,即可得到結(jié)論.
解答: 解:A.∵1+2-1=2>0,滿(mǎn)足不等式,∴點(diǎn)(1,2)在不等式表示的平面區(qū)域內(nèi).
B.∵0+0-1=-1<0不滿(mǎn)足不等式,∴點(diǎn)(0,0)不在不等式表示的平面區(qū)域內(nèi).
C.∵0+2-1=1>0,滿(mǎn)足不等式,∴點(diǎn)(0,2)在不等式表示的平面區(qū)域內(nèi).
D.∵2+0-1=1>0,滿(mǎn)足不等式,∴點(diǎn)(2,0)在不等式表示的平面區(qū)域內(nèi).
故選:B.
點(diǎn)評(píng):本題主要考查二元一次不等式表示平面區(qū)域以及點(diǎn)與區(qū)域的判斷,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)U={2,4,3-a2},P={2,a2+2-a},∁UP={-1},求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)關(guān)于x,y的不等式組
x-2y+1≥0
x≤a
y+a≥0
表示的平面區(qū)域?yàn)镈.若在平面區(qū)域D內(nèi)存在點(diǎn)P(x0,y0),滿(mǎn)足3x0-4y0=5,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若a+c=4
3
,則△ABC面積的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)M(x,y)為平面區(qū)域
x+y≥2
x≤1
y≤2
上的一個(gè)動(dòng)點(diǎn),則y-x的最大值是( 。
A、0B、-1C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列3,5,9,17,33…的一個(gè)通項(xiàng)公式是( 。
A、an=2n
B、an=2n+1
C、an=3n
D、an=2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

隨機(jī)變量ξ服從二項(xiàng)分布ξ~B(100,0.2),那么D(4ξ+3)的值為( 。
A、128B、256
C、64D、1024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx,若直線(xiàn)l過(guò)點(diǎn)(0,-1),并且與曲線(xiàn)y=f(x)相切,則直線(xiàn)l的方程為( 。
A、x+y-1=0
B、x-y-1=0
C、x+y+1=0
D、x-y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(x2-
i
x
n的展開(kāi)式中第三項(xiàng)與第五項(xiàng)的系數(shù)之比為-
3
14
,其中i2=-1,則展開(kāi)式中系數(shù)為實(shí)數(shù)且最大的項(xiàng)為( 。
A、第三項(xiàng)B、第四項(xiàng)
C、第五項(xiàng)D、第五項(xiàng)或第六項(xiàng)

查看答案和解析>>

同步練習(xí)冊(cè)答案