【題目】已知定圓,其圓心為,點(diǎn)為圓所在平面內(nèi)一定點(diǎn),點(diǎn)為圓上一個(gè)動(dòng)點(diǎn),若線段的中垂線與直線交于點(diǎn),則動(dòng)點(diǎn)的軌跡可能為______.(寫(xiě)出所有正確的序號(hào))(1)橢圓;(2)雙曲線;(3)拋物線;(4)圓;(5)直線;(6)一個(gè)點(diǎn).

【答案】1)(2)(4)(6)

【解析】

是線段中垂線上的點(diǎn),可得,對(duì)點(diǎn)的位置進(jìn)行分類討論,利用圓錐曲線的定義即可得出

1)若點(diǎn)在圓外部,,所以點(diǎn)的軌跡是以為焦點(diǎn)的雙曲線;

2)若點(diǎn)在圓上,則點(diǎn)重合,如圖,點(diǎn)點(diǎn)的軌跡為點(diǎn)

3)若點(diǎn)在圓內(nèi)部且不為圓心,則,,所以點(diǎn)的軌跡是以為焦點(diǎn)的橢圓;

4)若點(diǎn)在圓內(nèi)部且為圓心,重合時(shí),為半徑的中點(diǎn),所以點(diǎn)是以為圓心,以為半徑的圓

綜上所述,點(diǎn)的軌跡可能是(1)(2)(4)(6)四種情況

答案為:(1)(2)(4)(6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線的焦點(diǎn)作直線交拋物線于,兩點(diǎn),若,則的值為( )

A. 10 B. 8 C. 6 D. 4

【答案】B

【解析】

根據(jù)過(guò)拋物線焦點(diǎn)的弦長(zhǎng)公式,利用題目所給已知條件,求得弦長(zhǎng).

根據(jù)過(guò)拋物線焦點(diǎn)的弦長(zhǎng)公式有.故選B.

【點(diǎn)睛】

本小題主要考查過(guò)拋物線焦點(diǎn)的弦長(zhǎng)公式,即.要注意只有過(guò)拋物線焦點(diǎn)的弦長(zhǎng)才可以使用.屬于基礎(chǔ)題.

型】單選題
結(jié)束】
10

【題目】已知橢圓: 的右頂點(diǎn)、上頂點(diǎn)分別為、,坐標(biāo)原點(diǎn)到直線的距離為,且,則橢圓的方程為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在以為直徑的圓上,垂直與圓所在平面,的垂心.

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P到直線y=﹣4的距離比點(diǎn)P到點(diǎn)A0,1)的距離多3

(1)求點(diǎn)P的軌跡方程;

(2)經(jīng)過(guò)點(diǎn)Q0,2)的動(dòng)直線l與點(diǎn)P的軌交于M,N兩點(diǎn),是否存在定點(diǎn)R使得∠MRQ=∠NRQ?若存在,求出點(diǎn)R的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:實(shí)數(shù)滿足不等式;

命題q:關(guān)于不等式對(duì)任意的恒成立.

1)若命題為真命題,求實(shí)數(shù)的取值范圍;

2)若“為假命題,為真命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在實(shí)數(shù),對(duì)任意實(shí)數(shù),使不等式恒成立,則實(shí)數(shù)的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年,教育部發(fā)文確定新高考改革正式啟動(dòng),湖南、廣東、湖北等8省市開(kāi)始實(shí)行新高考制度,從2018年下學(xué)期的高一年級(jí)學(xué)生開(kāi)始實(shí)行.為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測(cè)評(píng),在成績(jī)統(tǒng)計(jì)分析中,高二某班的數(shù)學(xué)成績(jī)的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:

1)求該班數(shù)學(xué)成績(jī)?cè)?/span>的頻率及全班人數(shù);

2)根據(jù)頻率分布直方圖估計(jì)該班這次測(cè)評(píng)的數(shù)學(xué)平均分;

3)若規(guī)定分及其以上為優(yōu)秀,現(xiàn)從該班分?jǐn)?shù)在分及其以上的試卷中任取份分析學(xué)生得分情況,求在抽取的份試卷中至少有份優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求直線的普通方程及曲線的直角坐標(biāo)方程;

2)設(shè)直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的奇函數(shù)有最小正周期4,且時(shí),

(1)判斷并證明上的單調(diào)性,并求上的解析式;

(2)當(dāng)為何值時(shí),關(guān)于的方程上有實(shí)數(shù)解?

查看答案和解析>>

同步練習(xí)冊(cè)答案