【題目】設(shè)x,y,z∈R,z(x+2y)=m.
(1)若m=1,求的最小值;
(2)若x2+2y2+3z2=m2﹣8,求實數(shù)m的取值范圍.
【答案】(1)1;(2)(﹣∞,﹣4]∪[4,+∞).
【解析】
(1)由均值不等式及其變形,可得到兩數(shù)的平方和不小于兩數(shù)和平方的一半,對運用剛得到的基本不等式的變形性質(zhì),結(jié)合已知進(jìn)行求解即可;
(2)由均值不等式和絕對值不等式得x2+2y2+3z2=(x2+z2)+2(y2+z2)≥2|xz|+4|yz|≥2|xz+2yz|=2|z(x+2y)|=|m|,進(jìn)而得到關(guān)于m的不等式,解出即可.
(1)∵a2+b2≥2ab,
∴2(a2+b2)≥(a+b)2,即a2+b2(a+b)2,
∴x2+4y2z2(x+2y)2z22|(x+2y)z|=1,
當(dāng)且僅當(dāng)x=2y,x+2y=z時,即x=2yz,等號成立,
∴x2+4y2z2的最小值是1.
(2)∵m2﹣8=x2+2y2+3z2=(x2+z2)+2(y2+z2)≥2|xz|+4|yz|,(當(dāng)且僅當(dāng)|x|=|y|=|z|時等號成立),
又2|xz|+4|yz|≥2|xz+2yz|=2|z(x+2y)|=|m|,(當(dāng)且僅當(dāng)xz與yz非異號時等號成立).
∴m2﹣8≥2|m|,即m2﹣2|m|﹣8≥0,
解得|m|≥4,即m≥4或m≤﹣4,
所以m的取值范圍為(﹣∞,﹣4]∪[4,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的四個頂點圍成的菱形的面積為,橢圓的一個焦點為.
(1)求橢圓的方程;
(2)若,為橢圓上的兩個動點,直線,的斜率分別為,,當(dāng)時,的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“難度系數(shù)”反映試題的難易程度,難度系數(shù)越大,題目得分率越高,難度也就越。“難度系數(shù)”的計算公式為,其中,為難度系數(shù),為樣本平均失分,為試卷總分(一般為100分或150分).某校高三年級的李老師命制了某專題共5套測試卷(每套總分150分),用于對該校高三年級480名學(xué)生進(jìn)行每周測試.測試前根據(jù)自己對學(xué)生的了解,預(yù)估了每套試卷的難度系數(shù),如下表所示:
試卷序號 | 1 | 2 | 3 | 4 | 5 |
考前預(yù)估難度系數(shù) | 0.7 | 0.64 | 0.6 | 0.6 | 0.55 |
測試后,隨機(jī)抽取了50名學(xué)生的數(shù)據(jù)進(jìn)行統(tǒng)計,結(jié)果如下:
試卷序號 | 1 | 2 | 3 | 4 | 5 |
實測平均分 | 102 | 99 | 93 | 93 | 87 |
(1)根據(jù)試卷2的難度系數(shù)估計這480名學(xué)生第2套試卷的平均分;
(2)從抽樣的50名學(xué)生的5套試卷中隨機(jī)抽取2套試卷,記這2套試卷中平均分超過96分的套數(shù)為,求的分布列和數(shù)學(xué)期望;
(3)試卷的預(yù)估難度系數(shù)和實測難度系數(shù)之間會有偏差.設(shè)為第套試卷的實測難度系數(shù),并定義統(tǒng)計量,若,則認(rèn)為本專題的5套試卷測試的難度系數(shù)預(yù)估合理,否則認(rèn)為不合理.試檢驗本專題的5套試卷對難度系數(shù)的預(yù)估是否合理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為,右準(zhǔn)線為.過點作與坐標(biāo)軸都不垂直的直線與橢圓交于,兩點,線段的中點為,為坐標(biāo)原點,且直線與右準(zhǔn)線交于點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,求直線的方程;
(3)是否存在實數(shù),使得恒成立?若存在,求實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年初,一場新冠肺炎疫情突如其來,在黨中央強(qiáng)有力的領(lǐng)導(dǎo)下,全國各地的醫(yī)務(wù)工作者迅速馳援湖北,以大無畏的精神沖在了抗擊疫情的第一線,迅速控制住疫情.但國外疫情嚴(yán)峻,輸入性病例逐漸增多,為了鞏固我國的抗疫成果,保護(hù)國家和人民群眾的生命安全,我國三家生物高科技公司各自組成A、B、C三個科研團(tuán)隊進(jìn)行加急疫苗研究,其研究方向分別是滅活疫苗、核酸疫苗和全病毒疫苗,根據(jù)這三家的科技實力和組成的團(tuán)隊成員,專家預(yù)測這A、B、C三個團(tuán)隊未來六個月中研究出合格疫苗并用于臨床接種的概率分別為,,,且三個團(tuán)隊是否研究出合格疫苗相互獨立.
(1)求六個月后A,B兩個團(tuán)隊恰有一個研究出合格疫苗并用于臨床接種的概率;
(2)設(shè)六個月后研究出合格疫苗并用于臨床接種的團(tuán)隊個數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為4.且過點.
(1)求橢圓E的方程;
(2)設(shè),,,過B點且斜率為的直線l交橢圓E于另一點M,交x軸于點Q,直線AM與直線相交于點P.證明:(O為坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:和橢圓:相交于點,
(1)當(dāng)直線l過橢圓的左焦點和上頂點時,求直線l的方程
(2)點在上,若,求面積的最大值:
(3)如果原點O到直線l的距離是,證明:為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某地有一塊半徑為R的扇形AOB公園,其中O為扇形所在圓的圓心,AOB=,OA,OB,為公園原有道路.為滿足市民觀賞和健身的需要,市政部門擬在上選取一點M,新建道路OM及與OA平行的道路MN(點N在線段OB上),設(shè)AOM=.
(1)如何設(shè)計,才能使市民從點O出發(fā)沿道路OM,MN行走至點N所經(jīng)過的路徑最長?請說明理由;
(2)如何設(shè)計,才能使市民從點A出發(fā)沿道路,MN行走至點N所經(jīng)過的路徑最長?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右焦點分別為,上頂點為,離心率為, 在軸負(fù)半軸上有一點,且
(1)若過三點的圓 恰好與直線相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com