設(shè)曲線C1的參數(shù)方程為
x=4t
y=
3
+4t
(t為參數(shù)),曲線C2的極坐標(biāo)方程為ρ=2
2
sinθ,則曲線C1與C2交點的個數(shù)為( 。
A、0B、1C、2D、1或2
考點:簡單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:把參數(shù)方程、極坐標(biāo)方程化為直角坐標(biāo)方程,利用點到直線的距離公式的求出圓心到直線的距離小于半徑,可得直線和圓相交,從而得出結(jié)論.
解答: 解:曲線C1的參數(shù)方程為
x=4t
y=
3
+4t
(t為參數(shù))消去參數(shù),化為直角坐標(biāo)方程為 y=x+
3

曲線C2的極坐標(biāo)方程為ρ=2
2
sinθ,即ρ2=2
2
ρsinθ,即 x2+(y-
2
)
2
=2,
表示圓心為(0,
2
)、半徑等于
2
的圓.
由于圓心(0,
2
)到直線的距離d=
|0-
2
+
3
|
2
=<
2
=r,
則曲線C1與C2交點個數(shù)為2,
故選:C.
點評:本題主要考查把參數(shù)方程、極坐標(biāo)方程化為直角坐標(biāo)方程的方法,點到直線的距離公式的應(yīng)用,直線和圓的位置關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|
π
2
)的部分圖象如圖所示,則f(
π
2
)=( 。
A、-
3
2
B、-
2
2
C、
3
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3ex-x2ex-a在R上存在三個零點,則實數(shù)a的取值范圍為( 。
A、[6e-3,2e]
B、(0,2e]
C、(-6e-3,0)
D、(-6e-3,2e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計要求容器的容積為
80
3
π立方米,且l≥2r.假設(shè)該容器的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為22千元.設(shè)該容器的建造費用為y千元.當(dāng)該容器建造費用最小時,r的值為( 。
A、
1
2
B、1
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,
CM
=2
.
BM
,過點M的直線分別交射線AB、AC于不同的兩點P、Q.若
.
AP
=m
.
AB
,
.
AQ
=n
.
AC
,則m+n的最小值為( 。
A、1+
2
2
3
B、2
2
C、3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x+
1
2
)為奇函數(shù),設(shè)g(x)=f(x)+1,則g(
1
2015
)+g(
2
2015
)+g(
3
2015
)+g(
4
2015
)+…+g(
2014
2015
)=(  )
A、1007B、2014
C、2015D、4028

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2-2n,令bn=ancos
2
,記數(shù)列{bn}的前n項和為Tn,則T2014=( 。
A、-2011
B、-2012
C、-2013
D、-2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四面體ABCD及其三視圖如圖所示,平行于棱AD,BC的平面分別交四面體的棱AB、BD、DC、CA于點E、F、G、H.
(Ⅰ)求四面體ABCD的體積;
(Ⅱ)證明:四邊形EFGH是矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,EP交圓于E,C兩點,PD切圓于D,G為CE上一點且PG=PD,連接DG并延長交圓于點A,作弦AB垂直EP,垂足為F.
(Ⅰ)求證:AB為圓的直徑;
(Ⅱ)若AC=BD,求證:AB=ED.

查看答案和解析>>

同步練習(xí)冊答案