【題目】古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)的距離之比為定值的點(diǎn)的軌跡是圓”.后來,人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓在平面直角坐標(biāo)系中,點(diǎn).設(shè)點(diǎn)的軌跡為,下列結(jié)論正確的是( )

A. 的方程為

B. 軸上存在異于的兩定點(diǎn),使得

C. 當(dāng)三點(diǎn)不共線時(shí),射線的平分線

D. 上存在點(diǎn),使得

【答案】BC

【解析】

通過設(shè)出點(diǎn)P坐標(biāo),利用即可得到軌跡方程,找出兩點(diǎn)即可判斷B的正誤,設(shè)出點(diǎn)坐標(biāo),利用與圓的方程表達(dá)式解出就存在,解不出就不存在.

設(shè)點(diǎn),則,化簡(jiǎn)整理得,即,故A錯(cuò)誤;當(dāng)時(shí),,故B正確;對(duì)于C選項(xiàng),,要證PO為角平分線,只需證明,即證,化簡(jiǎn)整理即證,設(shè),則,

,則證

,故C正確;對(duì)于D選項(xiàng),設(shè),可得,整理得,而點(diǎn)M在圓上,故滿足,聯(lián)立解得無實(shí)數(shù)解,于是D錯(cuò)誤.故答案為BC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者,F(xiàn)從符合條件的志愿者中 隨機(jī)抽取名按年齡分組:第,第,第,第,第,得到的頻率分布直方圖如圖所示.

(1)若從第,,組中用分層抽樣的方法抽取名志愿者參廣場(chǎng)的宣傳活動(dòng),應(yīng)從第,組各抽取多少名志愿者?

(2)在(1)的條件下,該市決定在這名志愿者中隨機(jī)抽取名志愿者介紹宣傳經(jīng)驗(yàn),求第組志愿者有被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的右頂點(diǎn)A(2,0),且過點(diǎn)
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)B(1,0)且斜率為k1(k1≠0)的直線l于橢圓C相交于E,F(xiàn)兩點(diǎn),直線AE,AF分別交直線x=3于M,N兩點(diǎn),線段MN的中點(diǎn)為P,記直線PB的斜率為k2 , 求證:k1k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,a1=1,且anan+1+ (an﹣an+1)+1=0,則a2016=(
A.1
B.﹣1
C.2+
D.2﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對(duì)研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):

單價(jià)

9

9.2

9.4

9.6

9.8

10

銷量

100

94

93

90

85

78

(1)若銷量與單價(jià)服從線性相關(guān)關(guān)系,求該回歸方程;

(2)在(1)的前提下,若該產(chǎn)品的成本是5元/件,問:產(chǎn)品該如何確定單價(jià),可使工廠獲得最大利潤(rùn)。

附:對(duì)于一組數(shù)據(jù),……,

其回歸直線的斜率的最小二乘估計(jì)值為;

本題參考數(shù)值:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面四邊形中,.

(1)若,求;

(2)設(shè),若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B、C為⊙O上三點(diǎn),B為 的中點(diǎn),P為AC延長(zhǎng)線上一點(diǎn),PQ與⊙O相切于點(diǎn)Q,BQ與AC相交于點(diǎn)D.
(Ⅰ)證明:△DPQ為等腰三角形;
(Ⅱ)若PC=1,AD=PD,求BDQD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由無理數(shù)引發(fā)的數(shù)學(xué)危機(jī)一直延續(xù)到19世紀(jì).直到1872年,德國(guó)數(shù)學(xué)家戴德金從連續(xù)性的要求出發(fā),用有理數(shù)的“分割”來定義無理數(shù)(史稱戴德金分割),并把實(shí)數(shù)理論建立在嚴(yán)格的科學(xué)基礎(chǔ)上,才結(jié)束了無理數(shù)被認(rèn)為“無理”的時(shí)代,也結(jié)束了持續(xù)2000多年的數(shù)學(xué)史上的第一次大危機(jī).所謂戴德金分割,是指將有理數(shù)集劃分為兩個(gè)非空的子集,且滿足,,中的每一個(gè)元素都小于中的每一個(gè)元素,則稱為戴德金分割.試判斷,對(duì)于任一戴德金分割,下列選項(xiàng)中,不可能成立的是( )

A. 沒有最大元素, 有一個(gè)最小元素 B. 沒有最大元素, 也沒有最小元素

C. 有一個(gè)最大元素, 有一個(gè)最小元素 D. 有一個(gè)最大元素, 沒有最小元素

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng),求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)上是減函數(shù),求的最小值;

(3)證明:當(dāng)時(shí),.

查看答案和解析>>

同步練習(xí)冊(cè)答案