【題目】如圖,四棱錐P-ABCD的底面為平行四邊形,MPC中點(diǎn).

(1)求證:BA平面PCD;

(2)求證:AP平面MBD

【答案】(1)見解析(2)見解析

【解析】

(1)根據(jù)平行四邊形的性質(zhì)可知,結(jié)合直線與平面平行的判定定理可得結(jié)論;(2)設(shè),連接,由平行四邊形的性質(zhì)可知中位線,從而得到 ,利用線面平行的判定定理,即可證出平面.

證明(1)∵如圖,四棱錐P-ABCD的底面為平行四邊形,∴BCAD,

又∵AD平面PAD,BC平面PAD,BC∥平面PAD;

(2)設(shè)AC∩BD=H,連接MH,

H為平行四邊形ABCD對(duì)角線的交點(diǎn),

HAC中點(diǎn),

又∵MPC中點(diǎn),∴MH為△PAC中位線,

可得MHPA,

MH平面MBD,PA平面MBD,

所以PA∥平面MBD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn),圓C的方程為,點(diǎn)P為圓上的動(dòng)點(diǎn).

求過點(diǎn)A的圓C的切線方程.

的最大值及此時(shí)對(duì)應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓)的離心率是,點(diǎn)在短軸上,且。

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的菱形, , 平面 , 是棱上的一個(gè)點(diǎn), , 的中點(diǎn).

(1)證明: 平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,an>0,且
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè) ,Tn=b1+b2+…+bn , 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校自主招生一次面試成績(jī)的莖葉圖和頻率分布直方圖均受到了不同程度的損壞,其可見部分信息如下,據(jù)此解答下列問題:

1)求參加此次高校自主招生面試的總?cè)藬?shù)面試成績(jī)的中位數(shù)及分?jǐn)?shù)在內(nèi)的人數(shù);

2)若從面試成績(jī)?cè)?/span>內(nèi)的學(xué)生中任選兩人進(jìn)行隨機(jī)復(fù)查求恰好有一人分?jǐn)?shù)在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知PA垂直于矩形ABCD所在的平面,M、N分別為AB、PC的中點(diǎn),且

(1)求證:平面PAD;

(2)求證:面PCD;

(3)若,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市今年出現(xiàn)百年不遇的旱情,廣大市民自覺地節(jié)約用水.市自來水廠觀察某蓄水池供水情況以制定節(jié)水措施,發(fā)現(xiàn)某蓄水池中有水450噸,水廠每小時(shí)可向蓄水池中注水80噸,同時(shí)蓄水池又向居民小區(qū)供水,t小時(shí)內(nèi)供水量為噸,現(xiàn)在開始向水池注水并向居民小區(qū)供水.

(1)請(qǐng)將蓄水池中存水量S表示為時(shí)間t的函數(shù);

(2)問開始蓄水后幾小時(shí)存水量最少?

(3)若蓄水池中水量少于150噸時(shí),就會(huì)出現(xiàn)供水量緊張現(xiàn)象,問每天有幾小時(shí)供水緊張?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)和g(x)滿足f(x)= e2x2+x2﹣2f(0)x,且g′(x)+2g(x)<0,則下列不等式成立的是(
A.f(2)g(2015)<g(2017)
B.f(2)g(2015)>g(2017)
C.g(2015)>f(2)g(2017)
D.g(2015)>f(2)g(2017)

查看答案和解析>>

同步練習(xí)冊(cè)答案