【題目】已知函數(shù),的導(dǎo)數(shù).

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)證明:在區(qū)間上存在唯一零點;

(Ⅲ)設(shè),若對任意,均存在,使得,求實數(shù)的取值范圍.

【答案】(Ⅰ);(Ⅱ)證明見解析;(Ⅲ).

【解析】

(Ⅰ)將代入求出切點坐標(biāo),由題可得,將代入求出切線斜率,進而求出切線方程。

(Ⅱ)設(shè),則,由導(dǎo)函數(shù)研究的單調(diào)性進,而得出答案。

(Ⅲ)題目等價于,易求得,利用單調(diào)性求出的最小值,列不等式求解。

(Ⅰ),所以,即切線的斜率,且,從而曲線在點處的切線方程為.

(Ⅱ)設(shè),則.

當(dāng)時,;當(dāng)時,,所以單調(diào)遞增,在單調(diào)遞減.

,故存在唯一零點.

所以存在唯一零點.

(Ⅲ)由已知,轉(zhuǎn)化為, 的對稱軸所以 .

由(Ⅱ)知,只有一個零點,設(shè)為,且當(dāng)時,;當(dāng)時,,所以單調(diào)遞增,在單調(diào)遞減.

,所以當(dāng)時,.

所以,即,因此,的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)處有極值,且其圖像在處切線與平行.

1)求函數(shù)的單調(diào)區(qū)間;

2)求函數(shù)的極大值與極小值的差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是(

A. “若,則”的否命題為真命題

B. 函數(shù)的最小值為2

C. 命題“若,則”的逆否命題為真命題

D. 命題“”的否定是:“”。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組事件中,不是互斥事件的是( )

A.一個射手進行一次射擊,命中環(huán)數(shù)大于8與命中環(huán)數(shù)小于6

B.統(tǒng)計一個班級數(shù)學(xué)期中考試成績,平均分?jǐn)?shù)不低于90分與平均分?jǐn)?shù)不高于90

C.播種菜籽100粒,發(fā)芽90粒與發(fā)芽80

D.檢查某種產(chǎn)品,合格率高于與合格率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個袋子中有4個紅球,2個白球,若從中任取2個球,則這2個球中有白球的概率是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018614日,世界杯足球賽在俄羅斯拉開帷幕,世界杯給俄羅斯經(jīng)濟帶來了一定的增長,某紀(jì)念商品店的銷售人員為了統(tǒng)計世界杯足球賽期間商品的銷售情況,隨機抽查了該商品商店某天200名顧客的消費金額情況,得到如圖頻率分布表:將消費顧客超過4萬盧布的顧客定義為足球迷”,消費金額不超過4萬盧布的顧客定義為“非足球迷”。

消費金額/萬盧布

合計

顧客人數(shù)

9

31

36

44

62

18

200

(1)求這200名顧客消費金額的中位數(shù)與平均數(shù)(同一組中的消費金額用該組的中點值作代表;

(2)該紀(jì)念品商店的銷售人員為了進一步了解這200名顧客喜歡紀(jì)念品的類型,采用分層抽樣的方法從“非足球迷”,“足球迷”中選取5人,再從這5人中隨機選取3人進行問卷調(diào)查,則選取的3人中“非足球迷”人數(shù)的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一項自“一帶一路”沿線20國青年參與的評選中“高鐵”、“支付寶”、“共享單車”和“網(wǎng)購”被稱作中國“新四大發(fā)明”,曾以古代“四大發(fā)明”推動世界進步的中國,正再次以科技創(chuàng)新向世界展示自己的發(fā)展理念.某班假期分為四個社會實踐活動小組,分別對“新四大發(fā)明”對人們生活的影響進行調(diào)查.于開學(xué)進行交流報告會.四個小組隨機排序,則“支付寶”小組和“網(wǎng)購”小組不相鄰的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某居民區(qū)隨機抽取10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數(shù)據(jù)資料,算得, ,

,

(1).求家庭的月儲蓄對月收入的線性回歸方程;

(2).判斷變量之間的正相關(guān)還是負(fù)相關(guān);

(3).若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.

附:回歸直線的斜率和截距的最小二乘估計公式分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面ABCD是等邊三角形,四邊形ABCD是矩形,,F為棱PA上一點,且,MAD的中點,四棱錐的體積為

(1)若,NPB的中點,求證:平面平面PCD;

(2)是否存在,使得平面FMB與平面PAD所成的二面角余弦的絕對值為

查看答案和解析>>

同步練習(xí)冊答案