【題目】已知橢圓,圓心為坐標原點的單位圓O在C的內(nèi)部,且與C有且僅有兩個公共點,直線與C只有一個公共點.
(1)求C的標準方程;
(2)設不垂直于坐標軸的動直線l過橢圓C的左焦點F,直線l與C交于A,B兩點,且弦AB的中垂線交x軸于點P,求的值.
科目:高中數(shù)學 來源: 題型:
【題目】某單位共有老年人120人,中年人360人,青年人n人,為調(diào)查身體健康狀況,需要從中抽取一個容量為m的樣本,用分層抽樣的方法進行抽樣調(diào)查,樣本中的中年人為6人,則n和m的值不可以是下列四個選項中的哪組( )
A.n=360,m=14B.n=420,m=15C.n=540,m=18D.n=660,m=19
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校為了了解高三學生每天自主學習中國古典文學的時間,隨機抽取了高三男生和女生各50名進行問卷調(diào)查,其中每天自主學習中國古典文學的時間超過3小時的學生稱為“古文迷”,否則為“非古文迷”,調(diào)查結果如表:
古文迷 | 非古文迷 | 合計 | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(Ⅰ)根據(jù)表中數(shù)據(jù)能否判斷有的把握認為“古文迷”與性別有關?
(Ⅱ)現(xiàn)從調(diào)查的女生中按分層抽樣的方法抽出5人進行調(diào)查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);
(Ⅲ)現(xiàn)從(Ⅱ)中所抽取的5人中再隨機抽取3人進行調(diào)查,記這3人中“古文迷”的人數(shù)為,求隨機變量的分布列與數(shù)學期望.
參考公式: ,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某景區(qū)的各景點從2009年取消門票實行免費開放后,旅游的人數(shù)不斷地增加,不僅帶動了該市淡季的旅游,而且優(yōu)化了旅游產(chǎn)業(yè)的結構,促進了該市旅游向“觀光、休閑、會展”三輪驅(qū)動的理想結構快速轉(zhuǎn)變.下表是從2009年至2018年,該景點的旅游人數(shù)(萬人)與年份的數(shù)據(jù):
第年 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人數(shù)(萬人) | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
該景點為了預測2021年的旅游人數(shù),建立了與的兩個回歸模型:
模型①:由最小二乘法公式求得與的線性回歸方程;
模型②:由散點圖的樣本點分布,可以認為樣本點集中在曲線的附近.
(1)根據(jù)表中數(shù)據(jù),求模型②的回歸方程.(精確到個位,精確到0.01).
(2)根據(jù)下列表中的數(shù)據(jù),比較兩種模型的相關指數(shù),并選擇擬合精度更高、更可靠的模型,預測2021年該景區(qū)的旅游人數(shù)(單位:萬人,精確到個位).
回歸方程 | ① | ② |
30407 | 14607 |
參考公式、參考數(shù)據(jù)及說明:
①對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為.②刻畫回歸效果的相關指數(shù);③參考數(shù)據(jù):,.
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知直線的參數(shù)方程為.以坐標原點為極點,軸的非負半軸為極軸,取相同的長度單位建立極坐標系,曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)若曲線上的點到直線l的最大距離為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校教務處對學生學習的情況進行調(diào)研,其中一項是:對“學習數(shù)學”的態(tài)度是否與性別有關,可見隨機抽取了30名學生進行了問卷調(diào)查,得到了如下聯(lián)表:
男生 | 女生 | 合計 | |
喜歡 | 10 | ||
不喜歡 | 8 | ||
合計 | 30 |
已知在這30人中隨機抽取1人,抽到喜歡“學習數(shù)學”的學生的概率是.
(1)請將上面的列聯(lián)表補充完整(在答題卷上直接填寫結果,不需要寫求解過程);
(2)若從喜歡“學習數(shù)學”的女生中抽取2人進行調(diào)研,其中女生甲被抽到的概率為多少?(要寫求解過程)
(3)試判斷是否有95%的把握認為喜歡“學習數(shù)學”與性別有關?
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護意識,高二年級準備成立一個環(huán)境保護興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護興趣小組,再從這10人的興趣小組中抽出4人參加學校的環(huán)保知識競賽.
(1)設事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件發(fā)生的概率;
(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從金山區(qū)走出去的陳馳博士,在《自然—可持續(xù)性》雜志上發(fā)表的論文中指出:地球正在變綠,中國通過植樹造林和提高農(nóng)業(yè)效率,在其中起到了主導地位.已知某種樹木的高度(單位:米)與生長年限(單位:年,tN*)滿足如下的邏輯斯蒂函數(shù):,其中e為自然對數(shù)的底數(shù). 設該樹栽下的時刻為0.
(1)需要經(jīng)過多少年,該樹的高度才能超過5米?(精確到個位)
(2)在第幾年內(nèi),該樹長高最快?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com