【題目】學校為了了解高三學生每天自主學習中國古典文學的時間,隨機抽取了高三男生和女生各50名進行問卷調(diào)查,其中每天自主學習中國古典文學的時間超過3小時的學生稱為“古文迷”,否則為“非古文迷”,調(diào)查結(jié)果如表:
古文迷 | 非古文迷 | 合計 | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(Ⅰ)根據(jù)表中數(shù)據(jù)能否判斷有的把握認為“古文迷”與性別有關(guān)?
(Ⅱ)現(xiàn)從調(diào)查的女生中按分層抽樣的方法抽出5人進行調(diào)查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);
(Ⅲ)現(xiàn)從(Ⅱ)中所抽取的5人中再隨機抽取3人進行調(diào)查,記這3人中“古文迷”的人數(shù)為,求隨機變量的分布列與數(shù)學期望.
參考公式: ,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
【答案】(I)沒有的把握認為“古文迷”與性別有關(guān);(II)“古文迷”的人數(shù)為3,“非古文迷”有2;(III)分布列見解析,期望為.
【解析】試題分析:
試題解析:
試分析:(1)由列聯(lián)表,求得的值,即可作出結(jié)論;
(2)調(diào)查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分層抽樣的方法即可抽得結(jié)果.
(3)由為所抽取的3人中“古文迷”的人數(shù),的的所有取值為1,2,3,進而得到取每個值的概率,列出分布列,求解數(shù)學期望.
試題解析:(I)由列聯(lián)表得
所以沒有的把握認為“古文迷”與性別有關(guān).
(II)調(diào)查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分層抽樣的方法抽出5人,則“古文迷”的人數(shù)為人,“非古文迷”有人.
即抽取的5人中“古文迷”和“非古文迷”的人數(shù)分別為3人和2人
(III)因為為所抽取的3人中“古文迷”的人數(shù),所以的所有取值為1,2,3.
,,.
所以隨機變量的分布列為
1 | 2 | 3 | |
于是.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)a是實數(shù),f(x)=a﹣ (x∈R).
(1)證明不論a為何實數(shù),f(x)均為增函數(shù);
(2)若f(x)滿足f(﹣x)+f(x)=0,解關(guān)于x的不等式f(x+1)+f(1﹣2x)>0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大理石工廠初期花費98萬元購買磨大理石刀具,第一年需要各種費用12萬元,從第二年起,每年所需費用比上一年增加4萬元,該大理石加工廠每年總收入50萬元.
(1)到第幾年末總利潤最大,最大值是多少?
(2)到第幾年末年平均利潤最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某舉重運動隊為了解隊員的體重分布情況,從50名隊員中抽取10名作調(diào)查.抽取時現(xiàn)將全體隊員隨機按1~50編號,并按編號順序平均分成10組,每組抽一名,且各組內(nèi)抽取的編號依次增加5進行系統(tǒng)抽樣.
(1)若第5組抽出的號碼為22,寫出所有被抽取出來的編號;
(2)分別統(tǒng)計被抽取的10名隊員的體重(單位:公斤),獲得如圖所示的體重數(shù)據(jù)的莖葉圖,根據(jù)莖葉圖求該樣本的平均數(shù)和中位數(shù);
(3)在題(2)的莖葉圖中,從題中不輕于73公斤的隊員中隨機抽取2名隊員的體重數(shù)據(jù),求體重為81公斤的隊員被抽到的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了普及環(huán)保知識,增強環(huán)保意識,某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識測試.
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計 | |
甲班 | |||
乙班 | 30 | ||
總計 | 60 |
(Ⅰ)根據(jù)題目完成列聯(lián)表,并據(jù)此判斷是否有的把握認為環(huán)保知識成績優(yōu)秀與學生的文理分類有關(guān).
(Ⅱ)現(xiàn)已知, , 三人獲得優(yōu)秀的概率分別為, , ,設(shè)隨機變量表示, , 三人中獲得優(yōu)秀的人數(shù),求的分布列及期望.
附: ,
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知曲線(為參數(shù)),在以原點為極點, 軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為: .
(Ⅰ)求曲線的普通方程和直線的直角坐標方程;
(Ⅱ)過點且與直線平行的直線交于, 兩點,求點到, 兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(1)若直線是函數(shù)圖象的一條切線,求實數(shù)的值;
(2)若函數(shù)在上的最大值為(為自然對數(shù)的底數(shù)),求實數(shù)的值;
(3)若關(guān)于的方程有且僅有唯一的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形中, , 為邊的中點,將沿直線翻轉(zhuǎn)成.若為線段的中點,則在翻折過程中:
①是定值;②點在某個球面上運動;
③存在某個位置,使;④存在某個位置,使平面.
其中正確的命題是_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,短軸的兩個端點分別為.
(Ⅰ)若為等邊三角形,求橢圓的方程;
(Ⅱ)若橢圓的短軸長為,過點的直線與橢圓相交于兩點,且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com