已知函數(shù)f(x)=
x
1
(sint-lgt)dt(x>1),則f(x)的極大值點(diǎn)的個(gè)數(shù)為( 。
A、0B、1C、2D、3
考點(diǎn):定積分
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:首先利用定積分求出函數(shù)f(x),然后再求導(dǎo),繪制出導(dǎo)函數(shù)的圖象,根據(jù)圖象得出f(x)的單調(diào)區(qū)間,和f′(x)=0的點(diǎn),繼而求出函數(shù)的極值點(diǎn).
解答: 解:f(x)=
x
1
(sint-lgt)dt=
x
1
[sint+ln10-[ln10-lgt)]dt=(-cost+ln10•t-tlgt)
|
x
1
=-cosx+ln10•x-xlnx+cos1-ln10
∴f′(x)=sinx-lgx,
繪制導(dǎo)函數(shù)的圖象如圖所示

由圖象可知當(dāng)x在點(diǎn)A,B,C出sinx與lgx有交點(diǎn),設(shè)交點(diǎn)橫坐標(biāo)分別為a,b,c
則當(dāng)x=a,x=b,x=c時(shí),f′(x)=0,
當(dāng)f′(x)>0時(shí),即在(0,a)或(b,c)函數(shù)f(x)為憎函數(shù),
當(dāng)f′(x)<0時(shí),即在(a,b)或(c,+∞)函數(shù)f(x)為減函數(shù),
故在x=a或x=c時(shí)函數(shù)f(x)有極大值.
故f(x)的極大值點(diǎn)的個(gè)數(shù)為2個(gè).
故選:C.
點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)和函數(shù)的極值的問(wèn)題,本題的關(guān)鍵是利用數(shù)形結(jié)合的思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列求導(dǎo)運(yùn)算正確的是(  )
A、(x+
3
x
)′=1+
3
x2
B、(log2x)′=
1
xln2
C、(3x)′=3xlog3e
D、(x2cosx)′=-2xsinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x0>0,lnx0<0.則¬p為(  )
A、?x>0,lnx≥0
B、?x≤0,lnx≥0
C、?x0>0,lnx0≥0
D、?x0≤0,lnx0<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求f(x)=
log2(-x2-5x+6)
x+2
的定義域( 。
A、(-6,1)
B、(-∞,-6)∪(1,+∞)
C、(-6,-2)∪(-2,1)
D、R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算sin(-960°)的值為( 。
A、-
1
2
B、
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若6名學(xué)生排成一列,則學(xué)生甲、乙、丙三人互不相鄰的排位方法種數(shù)為( 。
A、24B、36C、72D、144

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1的參數(shù)方程為
x=2cosφ
y=2sinφ
(φw為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C2的極坐標(biāo)方程為ρ=4sin(θ+
π
3
).
(Ⅰ)將圓C1的參數(shù)方程化為普通方程,將圓C2的極坐標(biāo)方程化為直角坐標(biāo)系方程;
(Ⅱ)圓C1,C2是否相交?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,拋物線y=1-x2與x軸所圍成的區(qū)域是一塊等待開墾的土地,現(xiàn)計(jì)劃在該區(qū)域內(nèi)圍出一塊矩形地塊ABCD作為工業(yè)用地,其中A、B在拋物線上,C、D在x軸上.已知工業(yè)用地每單位面積價(jià)值為3a元(a>0),其它的三個(gè)邊角地塊每單位面積價(jià)值a元.
(Ⅰ)求等待開墾土地的面積;
(Ⅱ)如何確定點(diǎn)C的位置,才能使得整塊土地總價(jià)值最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a和b是任意非零實(shí)數(shù).
(1)求
|2a+b|+|2a-b|
|a|
的最小值.
(2)若不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案