若6名學(xué)生排成一列,則學(xué)生甲、乙、丙三人互不相鄰的排位方法種數(shù)為( 。
A、24B、36C、72D、144
考點(diǎn):計數(shù)原理的應(yīng)用
專題:排列組合
分析:不相鄰的問題,采用插空法,先排除學(xué)生甲、乙、丙三人的另外三個人形成4個空,然后插入甲、乙、丙三人,問題得以解決.
解答: 解:先排除學(xué)生甲、乙、丙三人的另外三個人形成4個空,然后插入甲、乙、丙三人種數(shù)為
A
3
3
A
3
4
=144.
故選:D
點(diǎn)評:本題考查排列、組合的運(yùn)用,關(guān)鍵要掌握特殊問題的處理方法,如相鄰問題用捆綁法,不相鄰問題用插空法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,S7=10,S14=30,求S21=( 。
A、40B、70C、60D、80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是等比數(shù)列{an}的前n項和,S3,S9,S6成等差數(shù)列,且a2+a5=2am,則m等于( 。
A、6B、7C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)數(shù)范圍內(nèi),方程x2=-3的解是( 。
A、±
3
B、-3
C、±
3
i
D、±3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
1
(sint-lgt)dt(x>1),則f(x)的極大值點(diǎn)的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

布袋中有六個只有顏色不同,其它都相同的球,其中紅球有4個,白球有2個.現(xiàn)在從中隨機(jī)抽取2個球,設(shè)其中白球個數(shù)為X.
(1)求X=1時的概率;
(2)求E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+1-lnx,其中a∈R是常數(shù).
(1)若曲線y=[f(x)]2在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)求函數(shù)f(x)的極值;
(3)試討論直線y=-x+e(e為自然對數(shù)的底數(shù))與曲線y=f(x)公共點(diǎn)的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2-4x+6
①當(dāng)x∈R時,畫出函數(shù)圖象,根據(jù)圖象寫出函數(shù)的增區(qū)間、減區(qū)間;
②當(dāng)x∈[1,4]時,求出函數(shù)的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)若f(α-
π
3
)=4cosα,求
cos(
π
2
-α)sin(π+α)
cos(4π+α)sin(3π-α)
的值.

查看答案和解析>>

同步練習(xí)冊答案