一批手機(jī)成箱包裝,每箱5只,某客戶在購(gòu)進(jìn)這批手機(jī)之前,首先取出3箱,再?gòu)拿肯渲腥稳?只手機(jī)進(jìn)行檢驗(yàn).設(shè)3箱手機(jī)中有二等品依次為0、1、2只,其余都是一等品.
(Ⅰ)用X表示抽檢的6只手機(jī)中二等品的件數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅱ)若抽檢的6只手機(jī)中有2只或2只以上的為二等品,用戶就拒絕購(gòu)買這批手機(jī),求用戶拒絕購(gòu)買這批手機(jī)的概率.
考點(diǎn):古典概型及其概率計(jì)算公式,離散型隨機(jī)變量的期望與方差
專題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:(Ⅰ)由取出的第一、二、三箱中分別有0件、1件、2件二等品可知變量X的取值,結(jié)合變量對(duì)應(yīng)的事件做出這四個(gè)事件發(fā)生的概率,寫出分布列和期望.
(Ⅱ)由上一問做出的分布列可以知道,P(X=2),P(X=3),這兩個(gè)事件是互斥的,根據(jù)互斥事件的概率公式得到結(jié)果.
解答: 解:(Ⅰ)X可能的取值為0,1,2,3.
P(X=0)=
C
2
4
C
2
5
C
2
3
C
2
5
=
9
50
;P(X=1)=
C
2
4
C
2
5
C
1
2
C
1
3
C
2
5
+
C
1
4
C
2
5
C
2
3
C
2
5
=
12
15
;
P(X=2)=
C
1
4
C
2
5
C
1
2
C
1
3
C
2
5
+
C
2
4
C
2
5
C
2
2
C
2
5
=
3
10
;P(X=3)=
C
1
4
C
2
5
C
2
2
C
2
5
=
1
25

X的分布列為
X 0 1 2 3
P
9
50
12
15
3
10
1
25
EEX=0×
9
50
+1×
12
15
+2×
3
10
+3×
1
25
=
6
5
;
(Ⅱ)所求的概率為P(X≥2)=P(X=2)+P(X=3)=
3
10
+
1
25
=
17
50
點(diǎn)評(píng):本題主要考查分布列的求法以及利用分布列求期望和概率,求離散型隨機(jī)變量的分布列和期望是近年來(lái)理科高考必出的一個(gè)問題,題目做起來(lái)不難,運(yùn)算量也不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos(-1560°)的值為( 。
A、-
1
2
B、
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x2+ax+b(a,b∈R),當(dāng)x∈[-1,1]時(shí),|f(x)|的最大值為m,則m的最小值為( 。
A、
1
2
B、1
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過(guò)點(diǎn)(1,
3
2
),F(xiàn)1、F2分別為橢圓C的左、右兩個(gè)焦點(diǎn),且離心率e=
1
2

(1)求橢圓C的方程;
(2)已知O為坐標(biāo)原點(diǎn),直線l過(guò)橢圓的右焦點(diǎn)F2與橢圓C交于M、N兩點(diǎn).若OM、ON 的斜率k1,k2滿足k1+k2=-3,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知左焦點(diǎn)為F1(-2
2
,0)的橢圓過(guò)點(diǎn)(
3
2
2
,
2
2
),過(guò)上頂點(diǎn)A作兩條互相垂直的動(dòng)弦AP,AQ交橢圓于P,Q兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動(dòng)弦AP所在直線的斜率為1,求直角三角形APQ的面積;
(3)試問動(dòng)直線PQ是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)給出證明,并求出該定點(diǎn);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由-1,0,1,2,3這五個(gè)數(shù)中選三個(gè)不同的數(shù)組成二次函數(shù)y=a2x+bx+c的系數(shù).
(1)開口向下的拋物線有幾條?
(2)開口向上且不過(guò)原點(diǎn)的拋物線有多少條?
(3)與x軸的正、負(fù)半軸各有一個(gè)交點(diǎn)的拋物線有多少條?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市為了了解今年高中畢業(yè)生的體能情況,從本市某高中畢業(yè)班中抽取了一個(gè)班進(jìn)行鉛球測(cè)試,成績(jī)?cè)?.0米(精確到0.1米)以上的為合格,把所得數(shù)據(jù)進(jìn)行整理后,分成六組畫出頻率分布直方圖的一部分,如圖,已知從左到右前5個(gè)小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第六小組的頻數(shù)是7.
(1)求這次鉛球測(cè)試成績(jī)合格的人數(shù);
(2)若從第一小組和第二小組中隨機(jī)抽取兩個(gè)人的測(cè)試成績(jī),則兩個(gè)人的測(cè)試成績(jī)來(lái)自同一小組的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD是邊長(zhǎng)為2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=
1
2
BD
(1)求證:BF∥平面ACE;
(2)求二面角B-AF-C的大;
(3)求點(diǎn)F到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)定義在R上,對(duì)任意的x,y∈R,f(x)≠0,且f(x+y)=f(x)f(y).
(Ⅰ)求f(0),并證明:f(x-y)=
f(x)
f(y)
;
(Ⅱ)若f(x)單調(diào),且f(1)=2.設(shè)向量
a
=(
2
cos
θ
2
,1),
b
=(
2
λsin
θ
2
,cos2θ),對(duì)任意θ∈[0,2π),f(
a
b
)-f(3)≤0恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案