【題目】已知橢圓的中心為原點(diǎn),左焦點(diǎn)為,離心率為,不與坐標(biāo)軸垂直的直線與橢圓交于兩點(diǎn).
(1)若為線段的中點(diǎn),求直線的方程.
(2)若點(diǎn)是直線上一點(diǎn),點(diǎn)在橢圓上,且滿足,設(shè)直線與直線的斜率分別為,問: 是否為定值?若是.請求出的值;若不是,請說明理由.
【答案】(1);(2)是定值,
【解析】
(1)根據(jù)離心率和求出橢圓方程,根據(jù)點(diǎn)差法求得斜率,即可求解直線的方程.(2) 設(shè)點(diǎn),根據(jù)和點(diǎn)在橢圓上表示出化簡即可求解.
(1)設(shè)橢圓的半焦距為,由題意可得
解得
故橢圓的方程為
設(shè),易知
由于點(diǎn)都在橢圓上,所以所以
因?yàn)?/span>為線段的中點(diǎn),所以
故直線的方程為,即.
(2)由(1)可知,直線,點(diǎn)
設(shè)點(diǎn),易知.
因?yàn)?/span>所以,得
因?yàn)辄c(diǎn)在橢圓上,所以即
所以
所以的值是定值,且值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程(為參數(shù)),直線的參數(shù)方程(為參數(shù)).
(1)求曲線在直角坐標(biāo)系中的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,當(dāng)曲線截直線所得線段的中點(diǎn)極坐標(biāo)為時,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校倡導(dǎo)為特困學(xué)生募捐,要求在自動購水機(jī)處每購買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計(jì)了連續(xù)5天的售出礦泉水箱數(shù)和收入情況,列表如下:
售出水量(單位:箱) | 7 | 6 | 6 | 5 | 6 |
收入(單位:元) | 165 | 142 | 148 | 125 | 150 |
學(xué)校計(jì)劃將捐款以獎學(xué)金的形式獎勵給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生綜合考核前20名,獲一等獎學(xué)金500元;綜合考核21-50名,獲二等獎學(xué)金300元;綜合考核50名以后的不獲得獎學(xué)金.
(1)若與成線性相關(guān),則某天售出9箱水時,預(yù)計(jì)收入為多少元?
(2)假設(shè)甲、乙、丙三名學(xué)生均獲獎,且各自獲一等獎和二等獎的可能性相同,求三人獲得獎學(xué)金之和不超過1000元的概率.
附:回歸方程,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),a∈R.
(1)若函數(shù)f(x)在x=1處的切線為y=2x+b,求a,b的值;
(2)記g(x)=f(x)+ax,若函數(shù)g(x)在區(qū)間(0,)上有最小值,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=0時,關(guān)于x的方程f(x)=bx2有兩個不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心為原點(diǎn),左焦點(diǎn)為,離心率為,不與坐標(biāo)軸垂直的直線與橢圓交于兩點(diǎn).
(1)若為線段的中點(diǎn),求直線的方程.
(2)求點(diǎn)是直線上一點(diǎn),點(diǎn)在橢圓上,且滿足,設(shè)直線與直線的斜率分別為,問:是否為定值?若是,請求出的值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位為促進(jìn)職工業(yè)務(wù)技能提升,對該單位120名職工進(jìn)行一次業(yè)務(wù)技能測試,測試項(xiàng)目共5項(xiàng).現(xiàn)從中隨機(jī)抽取了10名職工的測試結(jié)果,將它們編號后得到它們的統(tǒng)計(jì)結(jié)果如下表(表1)所示(“√”表示測試合格,“×”表示測試不合格).
表1:
編號\測試項(xiàng)目 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
規(guī)定:每項(xiàng)測試合格得5分,不合格得0分.
(1)以抽取的這10名職工合格項(xiàng)的項(xiàng)數(shù)的頻率代替每名職工合格項(xiàng)的項(xiàng)數(shù)的概率.
①設(shè)抽取的這10名職工中,每名職工測試合格的項(xiàng)數(shù)為,根據(jù)上面的測試結(jié)果統(tǒng)計(jì)表,列出的分布列,并估計(jì)這120名職工的平均得分;
②假設(shè)各名職工的各項(xiàng)測試結(jié)果相互獨(dú)立,某科室有5名職工,求這5名職工中至少有4人得分不少于20分的概率;
(2)已知在測試中,測試難度的計(jì)算公式為,其中為第項(xiàng)測試難度,為第項(xiàng)合格的人數(shù),為參加測試的總?cè)藬?shù).已知抽取的這10名職工每項(xiàng)測試合格人數(shù)及相應(yīng)的實(shí)測難度如下表(表2):
表2:
測試項(xiàng)目 | 1 | 2 | 3 | 4 | 5 |
實(shí)測合格人數(shù) | 8 | 8 | 7 | 7 | 2 |
定義統(tǒng)計(jì)量,其中為第項(xiàng)的實(shí)測難度,為第項(xiàng)的預(yù)測難度().規(guī)定:若,則稱該次測試的難度預(yù)測合理,否則為不合理,測試前,預(yù)估了每個預(yù)測項(xiàng)目的難度,如下表(表3)所示:
表3:
測試項(xiàng)目 | 1 | 2 | 3 | 4 | 5 |
預(yù)測前預(yù)估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
判斷本次測試的難度預(yù)估是否合理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程及曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線相交于兩點(diǎn),,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a∈R,數(shù)列{an}滿足a1=a,an+1=an﹣(an﹣2)3,則( 。
A.當(dāng)a=4時,a10>210B.當(dāng)時,a10>2
C.當(dāng)時,a10>210D.當(dāng)時,a10>2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com