【題目】函數(shù)f(x)=2ax﹣x2+lnx,a為常數(shù).
當(dāng)a=時,求f(x)的最大值;
【答案】解:當(dāng)a=時,f(x)=x﹣x2+lnx,則f(x)的定義域為:(0,+∞),
∴.
∴由f′(x)>0,得0<x<1;由f′(x)<0,得x>1;
∴f(x)在(0,1)上是增函數(shù),在(1,+∞)上是減函數(shù).
∴f(x)的最大值為f(1)=0;
【解析】先求函數(shù)的導(dǎo)函數(shù)f′(x),并將其因式分解,再由f′(x)>0,得函數(shù)的單調(diào)增區(qū)間,由f′(x)<0,得函數(shù)的單調(diào)減區(qū)間,繼而得到f(x)的最大值.
【考點精析】掌握函數(shù)的最大(小)值與導(dǎo)數(shù)是解答本題的根本,需要知道求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在x軸上,離心率為 , 且經(jīng)過點M(4,1),直線l:y=x+m交橢圓于不同的兩點A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三棱錐P﹣ABC,點P、A、B、C都在半徑為的球面上,若PA、PB、PC兩兩互相垂直,則球心到截面ABC的距離為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解放軍某部在實兵演練對抗比賽中,紅、藍兩個小組均派6人參加實彈射擊,其所得成績的莖葉圖如圖所示.
(1)根據(jù)射擊數(shù)據(jù),計算紅、藍兩個小組射擊成績的均值與方差,并說明紅軍還是藍軍的成績相對比較穩(wěn)定;
(2)若從藍軍6名士兵中隨機抽取兩人,求所抽取的兩人的成績之差不超過2的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,其中a>1
(1)當(dāng)a=2時,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關(guān)于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)在校就餐的高一年級學(xué)生有440名,高二年級學(xué)生有460名,高三年級學(xué)生有500名;為了解學(xué)校食堂的服務(wù)質(zhì)量情況,用分層抽樣的方法從中抽取70名學(xué)生進行抽樣調(diào)查,把學(xué)生對食堂的“服務(wù)滿意度”與“價格滿意度”都分為五個等級:1級(很不滿意);2級(不滿意);3級(一般);4級(滿意);5級(很滿意),其統(tǒng)計結(jié)果如下表(服務(wù)滿意度為x,價格滿意度為y).
y | 價格滿意度 | |||||
1 | 2 | 3 | 4 | 5 | ||
服 | 1 | 1 | 1 | 2 | 2 | 0 |
2 | 2 | 1 | 3 | 4 | 1 | |
3 | 3 | 7 | 8 | 8 | 4 | |
4 | 1 | 4 | 6 | 4 | 1 | |
5 | 0 | 1 | 2 | 3 | 1 |
(1)求高二年級共抽取學(xué)生人數(shù);
(2)求“服務(wù)滿意度”為3時的5個“價格滿意度”數(shù)據(jù)的方差;
(3)為提高食堂服務(wù)質(zhì)量,現(xiàn)從x<3且2≤y<4的所有學(xué)生中隨機抽取兩人征求意見,求至少有一人的“服務(wù)滿意度”為1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】養(yǎng)正中學(xué)新校區(qū)內(nèi)有一塊以O為圓心,R(單位:米)為半徑的半圓形荒地(如圖),?倓(wù)處計劃對其開發(fā)利用,其中弓形BCD區(qū)域(陰影部分)用于種植觀賞植物,△OBD區(qū)域用于種植花卉出售,其余區(qū)域用于種植草皮出售。已知種植觀賞植物的成本是每平方米20元,種植花卉的利潤是每平方米80元,種植草皮的利潤是每平方米30元。
(1)設(shè)(單位:弧度),用表示弓形BCD的面積
(2)如果該?倓(wù)處邀請你規(guī)劃這塊土地。如何設(shè)計的大小才能使總利潤最大?并求出該最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在 △ABC 中,設(shè) a,b,c 分別是角 A,B,C 的對邊,已知向量 = (a,sinC-sinB),= (b + c,sinA + sinB),且
(1) 求角 C 的大小
(2) 若 c = 3, 求 △ABC 的周長的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com