【題目】關(guān)于函數(shù)|cosx|+cos|2x|有下列四個結(jié)論:①是偶函數(shù);②π的最小正周期;③[π,π]上單調(diào)遞增;④的值域為[2,2].上述結(jié)論中,正確的個數(shù)為( 。

A.1B.2C.3D.4

【答案】B

【解析】

由二倍角的余弦公式和余弦函數(shù)的性質(zhì),化簡,由,可判斷①;可令,可得,由函數(shù)的周期性可判斷②;由的單調(diào)性,結(jié)合復(fù)合函數(shù)的單調(diào)性可判斷③;由二次函數(shù)的單調(diào)性可判斷④.

解:fx)=|cosx|+cos|2x||cosx|+2cos2|x|1,

cos|x|cosx,可得|cosx|+2cos2x12|cosx|2+|cosx|1,

,則為偶函數(shù),故①正確;

可令t|cosx|,可得,

y|cosx|的最小正周期π,可得的最小正周期為π,故②正確;

ycosx[0]遞增,在[0,]遞減,可得fx)在[,π]遞增,在[π,]遞減,故③錯誤;

t∈[01],,可得[0,1]遞增,則的值域為[1,2],故④錯誤.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在以為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

(Ⅰ)求曲線的普通方程和直線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點,若直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,側(cè)棱、、、都和平面垂直,,.

1)證明:平面平面;

2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在上的函數(shù)滿足任意都有,,,的大小關(guān)系是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱柱的所有棱長都為2,且.

1)證明:平面平面;

2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)組織的家庭教育活動上有一個游戲,每次由一個小孩與其一位家長參與,測試家長對小孩飲食習(xí)慣的了解程度.在每一輪游戲中,主持人給出A,BC,D四種食物,要求小孩根據(jù)自己的喜愛程度對其排序,然后由家長猜測小孩的排序結(jié)果.設(shè)小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxDyAyByCyD都是1,2,3,4四個數(shù)字的一種排列.定義隨機(jī)變量X=(xAyA2+xByB2+xCyC2+xDyD2,用X來衡量家長對小孩飲食習(xí)慣的了解程度.

1)若參與游戲的家長對小孩的飲食習(xí)慣完全不了解.

)求他們在一輪游戲中,對四種食物排出的序號完全不同的概率;

)求X的分布列(簡要說明方法,不用寫出詳細(xì)計算過程);

2)若有一組小孩和家長進(jìn)行來三輪游戲,三輪的結(jié)果都滿足X4,請判斷這位家長對小孩飲食習(xí)慣是否了解,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是圓的直徑,,在圓上且分別在的兩側(cè),其中,.現(xiàn)將其沿折起使得二面角為直二面角,則下列說法不正確的是(

A.,,在同一個球面上

B.當(dāng)時,三棱錐的體積為

C.是異面直線且不垂直

D.存在一個位置,使得平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左焦點為離心率為為圓的圓心.

(1)求橢圓的方程;

(2)已知過橢圓右焦點的直線交橢圓于兩點,過且與垂直的直線與圓交于兩點,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是矩形,沿對角線折起,使得點在平面上的射影恰好落在邊上.

(1)求證:平面平面;

(2)當(dāng)時,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案