【題目】設(shè)橢圓的左焦點為,離心率為,為圓的圓心.
(1)求橢圓的方程;
(2)已知過橢圓右焦點的直線交橢圓于兩點,過且與垂直的直線與圓交于兩點,求四邊形面積的取值范圍.
【答案】(1);(2)
【解析】試題分析:(Ⅰ)由題意求得a,b的值即可確定橢圓方程;
(Ⅱ)分類討論,設(shè)直線l代入橢圓方程,運用韋達(dá)定理和弦長公式,可得|AB|,根據(jù)點到直線的距離公式可求出|CD|,再由四邊形的面積公式,化簡整理,運用不等式的性質(zhì),即可得到所求范圍
試題解析:
(1)由題意知,則,
圓的標(biāo)準(zhǔn)方程為,從而橢圓的左焦點為,即,
所以,又,得.
所以橢圓的方程為:.
(2)可知橢圓右焦點.
(ⅰ)當(dāng)l與x軸垂直時,此時不存在,直線l:,直線,
可得:,,四邊形面積為12.
(ⅱ)當(dāng)l與x軸平行時,此時,直線,直線,
可得:,,四邊形面積為.
(iii)當(dāng)l與x軸不垂直時,設(shè)l的方程為 ,并設(shè),.
由得.
顯然,且, .
所以.
過且與l垂直的直線,則圓心到的距離為,
所以.
故四邊形面積:.
可得當(dāng)l與x軸不垂直時,四邊形面積的取值范圍為(12,).
綜上,四邊形面積的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點為,過點做軸的垂線交橢圓于兩點,且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若為橢圓短軸的上頂點,直線不經(jīng)過點且與相交于兩點,若直線與直線的斜率的和為,問:直線是否過定點?若是,求出這個定點,否則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的維修費用(萬元)有如下統(tǒng)計資料:
/年 | 2 | 3 | 4 | 5 | 6 |
/萬元 |
若由資料知, 對呈線性相關(guān)關(guān)系,試求:
(1)回歸直線方程;
(2)估計使用年限為10年時,維修費用約是多少?
參考公式:回歸直線方程: .其中
(注: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P是拋物線y2=﹣8x上一點,設(shè)P到此拋物線準(zhǔn)線的距離是d1,到直線x+y﹣10=0的距離是d2,則dl+d2的最小值是__.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過函數(shù)性質(zhì)的學(xué)習(xí),我們知道:“函數(shù)的圖象關(guān)于軸成軸對稱圖形”的充要條件是“為偶函數(shù)”.
(1)若為偶函數(shù),且當(dāng)時,,求的解析式,并求不等式的解集;
(2)某數(shù)學(xué)學(xué)習(xí)小組針對上述結(jié)論進(jìn)行探究,得到一個真命題:“函數(shù)的圖象關(guān)于直線成軸對稱圖形”的充要條件是“為偶函數(shù)”.若函數(shù)的圖象關(guān)于直線對稱,且當(dāng)時,.
(i)求的解析式;
(ii)求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時,解不等式;
(2)若關(guān)于的方程的解集中恰有一個元素,求的取值范圍;
(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】右圖是一個幾何體的平面展開圖,其中ABCD為
正方形, E、F分別為PA、PD的中點,在此幾何體中,
給出下面四個結(jié)論:
①直線BE與直線CF異面;②直線BE與直線AF異面;
③直線EF//平面PBC; ④平面BCE⊥平面PAD.
其中正確結(jié)論的個數(shù)是
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從2名男生和2名女生中任意選擇兩人在星期六、星期日參加某公益活動,每天一人,則星期六安排一名男生、星期日安排一名女生的概率為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com