【題目】設(shè)橢圓的左焦點(diǎn)為,離心率為,為圓的圓心.
(1)求橢圓的方程;
(2)已知過(guò)橢圓右焦點(diǎn)的直線交橢圓于兩點(diǎn),過(guò)且與垂直的直線與圓交于兩點(diǎn),求四邊形面積的取值范圍.
【答案】(1);(2)
【解析】試題分析:(Ⅰ)由題意求得a,b的值即可確定橢圓方程;
(Ⅱ)分類討論,設(shè)直線l代入橢圓方程,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,可得|AB|,根據(jù)點(diǎn)到直線的距離公式可求出|CD|,再由四邊形的面積公式,化簡(jiǎn)整理,運(yùn)用不等式的性質(zhì),即可得到所求范圍
試題解析:
(1)由題意知,則,
圓的標(biāo)準(zhǔn)方程為,從而橢圓的左焦點(diǎn)為,即,
所以,又,得.
所以橢圓的方程為:.
(2)可知橢圓右焦點(diǎn).
(ⅰ)當(dāng)l與x軸垂直時(shí),此時(shí)不存在,直線l:,直線,
可得:,,四邊形面積為12.
(ⅱ)當(dāng)l與x軸平行時(shí),此時(shí),直線,直線,
可得:,,四邊形面積為.
(iii)當(dāng)l與x軸不垂直時(shí),設(shè)l的方程為 ,并設(shè),.
由得.
顯然,且, .
所以.
過(guò)且與l垂直的直線,則圓心到的距離為,
所以.
故四邊形面積:.
可得當(dāng)l與x軸不垂直時(shí),四邊形面積的取值范圍為(12,).
綜上,四邊形面積的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,過(guò)點(diǎn)做軸的垂線交橢圓于兩點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若為橢圓短軸的上頂點(diǎn),直線不經(jīng)過(guò)點(diǎn)且與相交于兩點(diǎn),若直線與直線的斜率的和為,問(wèn):直線是否過(guò)定點(diǎn)?若是,求出這個(gè)定點(diǎn),否則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的維修費(fèi)用(萬(wàn)元)有如下統(tǒng)計(jì)資料:
/年 | 2 | 3 | 4 | 5 | 6 |
/萬(wàn)元 |
若由資料知, 對(duì)呈線性相關(guān)關(guān)系,試求:
(1)回歸直線方程;
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?
參考公式:回歸直線方程: .其中
(注: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P是拋物線y2=﹣8x上一點(diǎn),設(shè)P到此拋物線準(zhǔn)線的距離是d1,到直線x+y﹣10=0的距離是d2,則dl+d2的最小值是__.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)函數(shù)性質(zhì)的學(xué)習(xí),我們知道:“函數(shù)的圖象關(guān)于軸成軸對(duì)稱圖形”的充要條件是“為偶函數(shù)”.
(1)若為偶函數(shù),且當(dāng)時(shí),,求的解析式,并求不等式的解集;
(2)某數(shù)學(xué)學(xué)習(xí)小組針對(duì)上述結(jié)論進(jìn)行探究,得到一個(gè)真命題:“函數(shù)的圖象關(guān)于直線成軸對(duì)稱圖形”的充要條件是“為偶函數(shù)”.若函數(shù)的圖象關(guān)于直線對(duì)稱,且當(dāng)時(shí),.
(i)求的解析式;
(ii)求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;
(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò)1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】右圖是一個(gè)幾何體的平面展開(kāi)圖,其中ABCD為
正方形, E、F分別為PA、PD的中點(diǎn),在此幾何體中,
給出下面四個(gè)結(jié)論:
①直線BE與直線CF異面;②直線BE與直線AF異面;
③直線EF//平面PBC; ④平面BCE⊥平面PAD.
其中正確結(jié)論的個(gè)數(shù)是
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從2名男生和2名女生中任意選擇兩人在星期六、星期日參加某公益活動(dòng),每天一人,則星期六安排一名男生、星期日安排一名女生的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)f(x)=(x≥0),g(x)=的圖象可能是( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com