【題目】已知函數(shù),曲線在點(diǎn)處切線與直線垂直(其中為自然對數(shù)的底數(shù)).

(1)求的解析式及單調(diào)減區(qū)間;

(2)是否存在常數(shù),使得對于定義域的任意恒成立,若存在,求出 的值;若

不存在,說明理由.

【答案】(1),減區(qū)間為;(2).

【解析】

試題分析:(1)借助題設(shè)條件運(yùn)用導(dǎo)數(shù)的幾何意義求解;(2)借助題設(shè)分離參數(shù)構(gòu)造函數(shù)運(yùn)用導(dǎo)數(shù)的知識探求.

試題解析:

(1)函數(shù)的定義域?yàn)?/span>,又由題意有:,所以,故.此時,,由,解得.所以函數(shù)的單調(diào)減區(qū)間為.

(2)要恒成立,即,即.當(dāng)時,,則要恒成立,令,則,令,則,所以內(nèi)遞減,所以當(dāng)時,,故,所以內(nèi)遞增,,故.當(dāng)時,, 則要恒成立. 可知,當(dāng)時,,所以內(nèi)遞增,所以當(dāng)時,,故,所以內(nèi)遞增,,故. 綜合 可得:, 即存在常數(shù)滿足題意.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】劉徽是我國魏晉時期著名的數(shù)學(xué)家,他編著的《海島算經(jīng)》中有一問題:“今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高幾何?” 意思是:為了測量海島高度,立了兩根表,高均為5步,前后相距1000步,令后表與前表在同一直線上,從前表退行123步,人恰觀測到島峰,從后表退行127步,也恰觀測到島峰,則島峰的高度為( )(注:3丈=5步,1里=300步)

A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)相鄰兩對稱軸間的距離為,若將的圖像先向左平移個單位,再向下平移1個單位,所得的函數(shù)為奇函數(shù).

(1)求的解析式,并求的對稱中心;

(2)若關(guān)于的方程在區(qū)間上有兩個不相等的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和

1)計(jì)算,,;

2)猜想的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究某種微生物的生長規(guī)律,需要了解環(huán)境溫度)對該微生物的活性指標(biāo)的影響,某實(shí)驗(yàn)小組設(shè)計(jì)了一組實(shí)驗(yàn),并得到如表的實(shí)驗(yàn)數(shù)據(jù):

環(huán)境溫度

1

2

3

4

5

6

7

活性指標(biāo)

(Ⅰ)由表中數(shù)據(jù)判斷關(guān)于的關(guān)系較符合還是,并求關(guān)于的回歸方程(取整數(shù));

(Ⅱ)根據(jù)(Ⅰ)中的結(jié)果分析:若要求該種微生物的活性指標(biāo)不能低于,則環(huán)境溫度應(yīng)不得高于多少?

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了對某課題進(jìn)行研究,用分層抽樣方法從三所高校的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人)

高校

相關(guān)人數(shù)

抽取人數(shù)

A

18


B

36

2

C

54


)求,;

)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來自高校的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,分別為角的對邊,設(shè).

(1)若,且,求角的大;

(2)若,求角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線, 是焦點(diǎn),直線是經(jīng)過點(diǎn)的任意直線.

(Ⅰ)若直線與拋物線交于、兩點(diǎn),且是坐標(biāo)原點(diǎn), 是垂足),求動點(diǎn)的軌跡方程;

(Ⅱ)若、兩點(diǎn)在拋物線上,且滿足,求證:直線必過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四棱錐中, ,側(cè)棱與底面所成角的正切值為

(1)若中點(diǎn),求異面直線所成角的正切值;

(2)求側(cè)面與底面所成二面角的大小.

查看答案和解析>>

同步練習(xí)冊答案