【題目】為了對(duì)某課題進(jìn)行研究,用分層抽樣方法從三所高校的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見(jiàn)下表(單位:人)

高校

相關(guān)人數(shù)

抽取人數(shù)

A

18


B

36

2

C

54


)求;

)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來(lái)自高校的概率.

【答案】(Ⅰ),;(Ⅱ)

【解析】試題分析:(Ⅰ)利用分層抽樣的特點(diǎn)(等比例抽樣)進(jìn)行求解;(Ⅱ)利用列舉法得到所有和符合題意的基本事件和基本事件個(gè)數(shù),再利用古典概型的概率公式進(jìn)行求解.

試題解析:()由題意可得,.

)記從高校抽取的2人為,從高校抽取的3人為,則從高校抽取的5人中選2人作專題發(fā)言的基本事件有,共10.

設(shè)選中的2人都來(lái)自高校的事件為,則包含的基本事件有,共3種,

因此,故選中的2人都來(lái)自高校的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中,,四邊形為矩形,平面平面.

(1)求證:平面;

(2)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角為,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為等差數(shù)列的前項(xiàng)和,且, .

(1)求數(shù)列的通項(xiàng)公式;

(2)若,求證: ;

(3)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為做好2022年北京冬季奧運(yùn)會(huì)的宣傳工作,組委會(huì)計(jì)劃從某大學(xué)選取若干大學(xué)生志愿者,某記者在該大學(xué)隨機(jī)調(diào)查了300名大學(xué)生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:

愿意做志愿者工作

不愿意做志愿者工作

合計(jì)

男大學(xué)生

180

女大學(xué)生

45

合計(jì)

200

(Ⅰ)根據(jù)題意完成表格;

(Ⅱ)是否有的把握認(rèn)為愿意做志愿者工作與性別有關(guān)?

附:,

0.5

0.40

0.25

0.15

0.10

0.455

0.708

1.323

.072

2.706

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)曲線在點(diǎn)處切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).

(1)求的解析式及單調(diào)減區(qū)間;

(2)是否存在常數(shù),使得對(duì)于定義域的任意恒成立,若存在,求出 的值;若

不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽1人為優(yōu)秀的概率為.

優(yōu)秀

非優(yōu)秀

合計(jì)

甲班

10

乙班

30

合計(jì)

110

Ⅰ.請(qǐng)完成上面的列聯(lián)表;

Ⅱ.根據(jù)列聯(lián)表的數(shù)據(jù),是否有的把握認(rèn)為“成績(jī)與班級(jí)有關(guān)系”.

參考公式與臨界值表:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線, 是焦點(diǎn),直線是經(jīng)過(guò)點(diǎn)的任意直線.

(Ⅰ)若直線與拋物線交于、兩點(diǎn),且是坐標(biāo)原點(diǎn), 是垂足),求動(dòng)點(diǎn)的軌跡方程;

(Ⅱ)若、兩點(diǎn)在拋物線上,且滿足,求證:直線必過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 )的兩個(gè)焦點(diǎn)為, ,離心率為,點(diǎn), 在橢圓上, 在線段上,且的周長(zhǎng)等于

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)圓 上任意一點(diǎn)作橢圓的兩條切線與圓交于點(diǎn), ,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】A在直角坐標(biāo)系中,曲線的參數(shù)方程為,( 為參數(shù)),直線的方程為為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線和直線的極坐標(biāo)方程;

(2)若直線與曲線交于兩點(diǎn),求

已知不等式的解集為.

(1)求的值;

(2)若,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案