【題目】已知函數(shù),(其中是自然對(duì)數(shù)的底數(shù)),,

1)討論函數(shù)的單調(diào)性;

2)設(shè)函數(shù),若對(duì)任意的恒成立,求實(shí)數(shù)a的取值范圍.

【答案】1)在定義域上單調(diào)遞增;(2

【解析】

1)先求得,利用導(dǎo)數(shù)可得恒成立,故可得的單調(diào)區(qū)間.

2對(duì)任意的恒成立等價(jià)于對(duì)任意恒成立,就結(jié)合的單調(diào)性分類討論可得對(duì)任意恒成立,參變分離后再次利用導(dǎo)數(shù)可求的取值范圍.

解:(1)因?yàn)?/span>,所以.

,則,

當(dāng)時(shí),,函數(shù)單調(diào)遞減;

當(dāng)時(shí),,函數(shù)單調(diào)遞增.

所以,又因?yàn)?/span>,,

所以,在定義域上單調(diào)遞增.

2)由,即,

所以,即對(duì)任意恒成立,

設(shè),則

所以,當(dāng)時(shí),,函數(shù)單調(diào)遞增,

且當(dāng)時(shí),,當(dāng)時(shí),

,則

,因?yàn)?/span>,且上單調(diào)遞增,所以,

綜上可知,對(duì)任意恒成立,即對(duì)任意恒成立.

設(shè),則,所以單調(diào)遞增,

所以,即a的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】多面體中,△為等邊三角形,△為等腰直角三角形,平面,平面.

1)求證:;

2)若,,求平面與平面所成的較小的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,過(guò)曲線外的一點(diǎn)(其中,為銳角)作平行于的直線與曲線分別交于

(Ⅰ) 寫(xiě)出曲線和直線的普通方程(以極點(diǎn)為原點(diǎn),極軸為 軸的正半軸建系)

)若成等比數(shù)列,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn)O,對(duì)稱軸為軸,其準(zhǔn)線為.

1)求拋物線C的方程;

2)設(shè)直線,對(duì)任意的拋物線C上都存在四個(gè)點(diǎn)到直線l的距離為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)有十二生肖,又叫十二屬相,每一個(gè)人的出生年份對(duì)應(yīng)了十二種動(dòng)物(鼠、牛、虎、兔、龍、蛇、馬、羊、猴、雞、狗、豬)中的一種.現(xiàn)有十二生肖的吉祥物各一個(gè),已知甲同學(xué)喜歡牛、馬和猴,乙同學(xué)喜歡牛、狗和羊,丙同學(xué)所有的吉祥物都喜歡,讓甲乙丙三位同學(xué)依次從中選一個(gè)作為禮物珍藏,若各人所選取的禮物都是自己喜歡的,則不同的選法有(

A.50B.60C.80D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市有兩家共享單車公司,在市場(chǎng)上分別投放了黃、藍(lán)兩種顏色的單車,已知黃、藍(lán)兩種顏色的單車的投放比例為2:1.監(jiān)管部門為了了解兩種顏色的單車的質(zhì)量,決定從市場(chǎng)中隨機(jī)抽取5輛單車進(jìn)行體驗(yàn),若每輛單車被抽取的可能性相同.

(1)求抽取的5輛單車中有2輛是藍(lán)色顏色單車的概率;

(2)在騎行體驗(yàn)過(guò)程中,發(fā)現(xiàn)藍(lán)色單車存在一定質(zhì)量問(wèn)題,監(jiān)管部門決定從市場(chǎng)中隨機(jī)地抽取一輛送技術(shù)部門作進(jìn)一步抽樣檢測(cè),并規(guī)定若抽到的是藍(lán)色單車,則抽樣結(jié)束,若抽取的是黃色單車,則將其放回市場(chǎng)中,并繼續(xù)從市場(chǎng)中隨機(jī)地抽取下一輛單車,并規(guī)定抽樣的次數(shù)最多不超過(guò))次.在抽樣結(jié)束時(shí),已取到的黃色單車以表示,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),(是自然對(duì)數(shù)的底數(shù)).

1)討論的單調(diào)性;

2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(常數(shù)).

1)當(dāng)時(shí),求曲線處的切線方程;

2)討論函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)(為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)幾年前對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)人員年齡分布扇形圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不一定正確的是( ).

注:90后指1990-1999年之間出生的人群,80后指1980-1989年之間出生的人群,80前指179年及以前出生的人群.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的20%

C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

同步練習(xí)冊(cè)答案