【題目】已知函數(shù)f(x)=x2+ax+b(a,b∈R)在區(qū)間(0,1]上有零點x0 , 則 的最大值是 .
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,F是PB的中點.求證:
(1)DF⊥AP.
(2)在線段AD上是否存在點G,使GF⊥平面PBC?若存在,說明G點的位置,并證明你的結(jié)論;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】王先生家住 A 小區(qū),他工作在 B 科技園區(qū),從家開車到公司上班路上有 L1 , L2兩條路線(如圖),L1路線上有 A1 , A2 , A3三個路口,各路口遇到紅燈的概率均為 ;L2路線上有 B1 , B2兩個路.各路口遇到紅燈的概率依次為 , .若走 L1路線,王先生最多遇到 1 次紅燈的概率為;若走 L2路線,王先生遇到紅燈次數(shù) X 的數(shù)學期望為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)m∈R,函數(shù)f(x)=ex﹣m(x+1) m2(其中e為自然對數(shù)的底數(shù))
(Ⅰ)若m=2,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)已知實數(shù)x1 , x2滿足x1+x2=1,對任意的m<0,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,求x1的取值范圍;
(Ⅲ)若函數(shù)f(x)有一個極小值點為x0 , 求證f(x0)>﹣3,(參考數(shù)據(jù)ln6≈1.79)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知冪函數(shù)(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù),若g(x)>2對任意的x∈R恒成立,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)滿足f(2x)=x2﹣2ax+a2﹣1.
(Ⅰ)求f(x)的解析式,并寫出f(x)的定義域;
(Ⅱ)若f(x)在 上的值域為[﹣1,0],求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】判斷下列函數(shù)的奇偶性.
(1)f(x)=x2-|x|+1,x∈[-1,4]; (2)f(x)=;
(3)f(x)=; (4)f(x)=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,g(x)=a(x+b)(0<a≤1,b≤0).
(1)討論函數(shù)y=f(x)g(x)的奇偶性;
(2)當b=0時,判斷函數(shù)y= 在(﹣1,1)上的單調(diào)性,并說明理由;
(3)設(shè)h(x)=|af2(x)﹣ |,若h(x)的最大值為2,求a+b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠今年擬舉行促銷活動,經(jīng)調(diào)查測算,該廠產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x(萬件)與年促銷費m(萬元)(m≥0)滿足x=3-.已知今年生產(chǎn)的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將今年該產(chǎn)品的利潤y(萬元)表示為年促銷費m(萬元)的函數(shù);
(2)求今年該產(chǎn)品利潤的最大值,此時促銷費為多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com