如圖是一組樣本數(shù)據(jù)的頻率分布直方圖,則依據(jù)圖形中的數(shù)據(jù),可以估計總體的平均數(shù)與中位數(shù)分別是( 。
A、12.5  12.5
B、13    13
C、13.5  12.5
D、13.5 13
考點:眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計
分析:根據(jù)頻率分布直方圖的數(shù)據(jù),結合平均數(shù)數(shù)和中位數(shù)的對應進行判斷即可.
解答: 解:根據(jù)頻率分布直方圖可以得到第一組的頻率為0.2,
第二組的頻率為0.5,則第三組的頻率為0.3,
則平均數(shù)為7.5×0.2+12.5×0.5+17.5×0.3=13,
由中位數(shù)的概念可以得到中位數(shù)在第二組區(qū)間(10,15]的
3
5
的位置,
即中位數(shù)為10+(15-10)×
3
5
=13

∴中位數(shù)為13,
故選:B
點評:本題主要考查頻率分布直方圖的應用,要求熟練掌握中位數(shù)和平均數(shù)的定義以及計算方式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知x∈R,y∈[0,5],我們把滿足方程x2+8xsin(
1
4
x+y)π+16=0的解(x,y)組成的集合記為M,則集合M中的元素個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系xOy上的區(qū)域D由不等式組
0≤x≤4
0≤y≤5
4y≥x
給出,若M(x,y)為D上的動點,點A(2,-1),則z=|
OM
-
OA
|的最小值為( 。
A、
5
B、
6
17
17
C、
3
6
D、2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x丨log2x>0},B={x丨x(x-2)>0},則A∩B=( 。
A、(0,+∞)
B、(1,+∞)
C、(1,2)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=3sinx-4cosx的一條對稱軸方程是x=α,則α的取值范圍可以是( 。
A、(0,
π
4
B、(
π
4
,
π
2
C、(
π
2
,
4
D、(
4
,π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a=∫
 
π
0
sinxdx,則二項式(ax-
1
x
8的展開式中x2項的系數(shù)是(  )
A、-1120B、1120
C、-1792D、1792

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
-x2+2x+1,x≥0
-x+1,x<0
,則函數(shù)g(x)=f(x)-e-x的零點個數(shù)是( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C是y=f(x)(x∈R)的圖象,則(  )
A、直線x=1與C可能有兩個交點
B、直線x=1與C有且只有一個交點
C、直線y=1與C有且只有一個交點
D、直線y=1與C不可能有兩個交點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=1,a2=
1
2
,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,n∈N*
(Ⅰ)令bn=a2n-1,判斷{bn}是否為等差數(shù)列,并求出bn;
(Ⅱ)記{an}的前2n項的和為T2n,求T2n

查看答案和解析>>

同步練習冊答案