【題目】已知函數(shù)f(x)=eax﹣x﹣1,且f(x)≥0.
(1)求a;
(2)在函數(shù)f(x)的圖象上取定兩點(diǎn)A(x1,f(x1)),B(x2,f(x2))(x1<x2),記直線AB的斜率為k,問(wèn):是否存在x0∈(x1,x2),使f'(x0)=k成立?若存在,求出x0的值(用x1,x2表示);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)a=1(2)存在;
【解析】
(1)當(dāng)時(shí),判斷出不恒成立.當(dāng)時(shí),利用導(dǎo)數(shù)求得的最小值,根據(jù)這個(gè)最小值為非負(fù)數(shù),構(gòu)造函數(shù)并結(jié)合導(dǎo)數(shù),求得的值.
(2)首先求得的表達(dá)式,構(gòu)造函數(shù),由,結(jié)合零點(diǎn)存在性定理,判斷出存在,并求得的值.
(1)若a≤0,則對(duì)一切x>0,f(x)=eax﹣x﹣1<0,不符合題意,
若a>0,f′(x)=aeax﹣1,令f′(x)=aeax﹣1=0可得x,
當(dāng)x時(shí),f′(x)<0,函數(shù)f(x)單調(diào)遞減,當(dāng)x時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增,
故當(dāng)x時(shí),函數(shù)取得最小值f(),
由題意可得,有0①,
令g(t)=t﹣tlnt﹣1,則g′(t)=﹣lnt,
當(dāng)0<t<1時(shí),g′(t)>0,g(t)單調(diào)遞增,當(dāng)t>1時(shí),g′(t)<0,g(t)單調(diào)遞減,
故當(dāng)t=1時(shí),g(t)取得最大值g(1)=0,當(dāng)且僅當(dāng)1即a=1時(shí)①成立,
綜上a=1;
(2)由題意可知,k1,
令t(x)=f′(x)﹣k=ex,則可知y=t(x)在[x1,x2]上單調(diào)遞增,
且t(x1)[(x2﹣x1)﹣1],t(x2)[e(x1﹣x2)﹣1],
由(1)可知f(x)=ex﹣x﹣1≥0,x=0時(shí)取等號(hào),
∴(x2﹣x1)﹣1≥0,e(x1﹣x2)﹣1≥0,
∴t(x1)<0,t(x2)>0,
由零點(diǎn)判定定理可得,存在x0∈(x1,x2),使得t(x0)=0且由解得,
綜上可得,存在x0∈(x1,x2),使f'(x0)=k成立
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位共有職工2000人,其中男職工1200人,女職工800人為調(diào)查2019年“雙十一”購(gòu)物節(jié)的消費(fèi)情況,按照性別采用分層抽樣的方法抽取了該單位100人在“雙十一”當(dāng)天網(wǎng)絡(luò)購(gòu)物的消費(fèi)金額(單位:百元),其頻率分布直方圖如下:
(1)已知抽取的樣本中,有3名女職工的消費(fèi)不低于1000元,現(xiàn)從消費(fèi)不低于1000元的職工中抽取3名職工進(jìn)行購(gòu)物指導(dǎo),求抽取的3名職工中至少有兩名女職工的概率;
(2)在“雙十一”當(dāng)天網(wǎng)絡(luò)購(gòu)物消費(fèi)金額不低于600元者稱為“購(gòu)物狂”,低于600元者稱為“理性購(gòu)物者”.已知在抽取的樣本中有18名女職工消費(fèi)不低于600元,請(qǐng)完成上圖中的列聯(lián)表,并判斷能否有99%的把握認(rèn)為“是不是購(gòu)物狂”與性別有關(guān).
附:參考數(shù)據(jù)與公式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列滿足.
(1)求的通項(xiàng)公式;
(2)設(shè)等比數(shù)列滿足,問(wèn): 與數(shù)列的第幾項(xiàng)相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,分別是的邊,上的一點(diǎn),,將沿折起為,使點(diǎn)位于點(diǎn)的位置,連接,,.
(1)若,分別是,的中點(diǎn),平面與平面的交線為,證明:;
(2)若平面平面,與的面積分別為4和9,,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代有著輝煌的數(shù)學(xué)研究成果,其中《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》有著豐富多彩的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn).這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期.現(xiàn)擬從這5部專著中選擇2部作為學(xué)生課外興趣拓展參考書(shū)目,則所選2部專著中至少有一部不是漢、魏、晉、南北朝時(shí)期專著的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)為的正方體中,O是AC的中點(diǎn),E是線段D1O上一點(diǎn),且D1E=λEO.
(1)若λ=1,求異面直線DE與CD1所成角的余弦值;
(2)若平面CDE⊥平面CD1O,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的坐標(biāo)方程為,若直線與曲線相切.
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn)、于原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年底,北京2022年冬奧組委會(huì)啟動(dòng)志愿者全球招募,僅一個(gè)月內(nèi)報(bào)名人數(shù)便突破60萬(wàn),其中青年學(xué)生約有50萬(wàn)人.現(xiàn)從這50萬(wàn)青年學(xué)生志愿者中,按男女分層抽樣隨機(jī)選取20人進(jìn)行英語(yǔ)水平測(cè)試,所得成績(jī)(單位:分)統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下:
(Ⅰ)試估計(jì)在這50萬(wàn)青年學(xué)生志愿者中,英語(yǔ)測(cè)試成績(jī)?cè)?/span>80分以上的女生人數(shù);
(Ⅱ)從選出的8名男生中隨機(jī)抽取2人,記其中測(cè)試成績(jī)?cè)?/span>70分以上的人數(shù)為X,求的分布列和數(shù)學(xué)期望;
(Ⅲ)為便于聯(lián)絡(luò),現(xiàn)將所有的青年學(xué)生志愿者隨機(jī)分成若干組(每組人數(shù)不少于5000),并在每組中隨機(jī)選取個(gè)人作為聯(lián)絡(luò)員,要求每組的聯(lián)絡(luò)員中至少有1人的英語(yǔ)測(cè)試成績(jī)?cè)?/span>70分以上的概率大于90%.根據(jù)圖表中數(shù)據(jù),以頻率作為概率,給出的最小值.(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在處的切線與軸平行,求的極值;
(2)當(dāng)或時(shí),試討論方程實(shí)數(shù)根的個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com