如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
3
,左焦點(diǎn)為F,A,B,C為其三個(gè)頂點(diǎn),直線CF與AB交于點(diǎn)D,則tan∠BDC的值等于
 
考點(diǎn):橢圓的簡單性質(zhì)
專題:計(jì)算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)橢圓方程,求出A,B,C,F(xiàn)的坐標(biāo),再由離心率公式,得到b=
5
3
a,c=
2
3
a,再由直線的斜率公式和直線CF到直線AB的角的正切公式,即可求得.
解答: 解:由橢圓的方程可得,F(xiàn)(-c,0),A(-a,0),B(0,b),C(0,-b),
由于離心率為
2
3
,則
c
a
=
2
3
,則b=
5
3
a,c=
2
3
a,
直線AB的斜率為:
b
a
=
5
3
,
直線CF的斜率為:
b
-c
=-
5
2

則tan∠BDC=
5
3
+
5
2
1+(-
5
3
×
5
2
)
=5
5

故答案為:5
5
點(diǎn)評:本題考查橢圓的方程和性質(zhì),考查直線的斜率公式及兩直線的到角公式,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=log
1
3
(x2-6x+10)
在區(qū)間[1,5]上的最值及單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x-1,g(x)=
1
1+x2

(1)求f(x+1),g(
1
x
),f(g(x));
(2)寫出函數(shù)f(x)與g(x)定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
5
+
y2
9
=1
上一點(diǎn)P到橢圓的一焦點(diǎn)的距離為3,則P到另一焦點(diǎn)的距離是( 。
A、2
5
-3
B、2
C、3
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=k(x+2)與橢圓
x2
2
+y2=1相較于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),若以O(shè)A、OB為;鄰邊作平行四邊形OAPB.
(1)求P點(diǎn)的軌跡方程;
(2)是否存在直線l,使OAPB為矩形,若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù) f(x)=
1
2
x2-
m
2
ln(1+2x)+mx-2m,其中 m<0.
(Ⅰ)試討論函數(shù) f(x)的單調(diào)性;
(Ⅱ)已知當(dāng) m≤-
e
2
(其中 e是自然對數(shù)的底數(shù))時(shí),在 x∈(-
1
2
,
e-1
2
]
上至少存在一點(diǎn) x0,使 f(x0)>e+1成立,求 m的取值范圍;
(Ⅲ)求證:當(dāng) m=-1時(shí),對任意 x1,x2∈(0,1),x1≠x2,有 
f(x2)-f(x1)
x2-x1
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|x-1|+|x+3|≥a恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地一天從零至24小時(shí)的溫度變化近似滿足函數(shù)y=2sin(x-
π
4
)+8,其中x代表時(shí)間,y代表溫度,則這天中最低溫度是多少,最高溫度是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+x-
1
2
x2+
1
3
x3-
1
4
x4+…+
1
2015
x2015
,g(x)=1-x+
1
2
x2-
1
3
x3+
1
4
x4-…-
1
2015
x2015
.設(shè)F(x)=f(x-4)•g(x+3),且函數(shù)F(x)的零點(diǎn)均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),圓x2+y2=b-a的面積的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案