【題目】如圖,已知、,、分別為的外心,重心,.

1)求點的軌跡的方程;

2)是否存在過的直線交曲線兩點且滿足,若存在求出的方程,若不存在請說明理由.

【答案】1;(2)不存在.

【解析】

1)設(shè)點,利用重心的坐標(biāo)公式得出點的坐標(biāo)為,可得出點,由可得出點的軌跡的方程;

2)由題意得出直線的斜率存在,并設(shè)直線的方程為,設(shè)點、,將直線的方程與曲線的方程聯(lián)立,并列出韋達(dá)定理,由,可得出代入韋達(dá)定理求出的值,即可得出直線的方程,此時,直線過點,從而說明直線不存在.

1)設(shè)點,則點,由于,則點.

,可得出,化簡得.

因此,軌跡的方程為;

2)當(dāng)軸重合時不符合條件.

假設(shè)存在直線,設(shè)點、.

將直線的方程與曲線的方程聯(lián)立

消去,由韋達(dá)定理得,.

,,,得

,

另一方面,得,解得.

則直線過點,因此,直線不存在.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系,曲線的參數(shù)方程為(其中為參數(shù))曲線的普通方程為,以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系.

1)求曲線和曲線的極坐標(biāo)方程;

2)射線:依次與曲線和曲線交于、兩點,射線:依次與曲線和曲線交于、兩點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點在橢圓上,橢圓的右焦點,直線過橢圓的右頂點,與橢圓交于另一點,與軸交于點.

1)求橢圓的方程;

2)若為弦的中點,是否存在定點,使得恒成立?若存在,求出點的坐標(biāo),若不存在,請說明理由;

3)若,交橢圓于點,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)a1時,求不等式f(x)2的解集;

(2)若對任意xR,不等式f(x)≥a23a3恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足,設(shè),.

(Ⅰ)求證:數(shù)列是等比數(shù)列;

(Ⅱ)若,,求實數(shù)的最小值;

(Ⅲ)當(dāng)時,給出一個新數(shù)列,其中,設(shè)這個新數(shù)列的前項和為,若可以寫成,)的形式,則稱為“指數(shù)型和”.問中的項是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是平行四邊形,∠ADC60°,ADAC2,OAC的中點,PO⊥平面ABCDPO4,MPD的中點.

1)證明:MO∥平面PAB

2)求直線AM與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖所示,在正三棱柱中,底面邊長為,側(cè)棱長為,是棱的中點.

)求證:平面;

)求二面角的大小;

)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).若方程有且只有兩個不同的實根,則實數(shù)的取值范圍為 ( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)①若直線的圖象相切, 求實數(shù)的值;

②令函數(shù),求函數(shù)在區(qū)間上的最大值.

(2)已知不等式對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案