【題目】如圖,在三棱柱ABCA1B1C1中, CC1⊥平面ABC, AC⊥BC, AB1的中點為D,B1C∩BC1=E. 求證:
(1)DE∥平面AA1C1C;
(2)AC⊥平面BCC1B1.
【答案】(1)見解析;(2)見解析.
【解析】
試題分析:(1)由三角形中位線定理得,由線面平行的判定定理可得 平面;(2)CC1⊥平面ABC可得AC⊥CC1,由已知AC⊥BC,從而由線面垂直的判定定理可得結(jié)果.
試題解析:(1) 由題意知,E為B1C的中點,又D為AB1的中點,因此DE∥AC.
因為DE平面AA1C1C,AC平面AA1C1C,所以DE∥平面AA1C1C.
(2) CC1⊥平面ABC.
因為CC1⊥平面ABC,所以AC⊥CC1.
因為AC⊥BC,CC1平面BCC1B1,BC平面BCC1B1,
BC∩CC1=C,
所以AC⊥平面BCC1B1.
【方法點晴】本題主要考查線面平行的判定定理、線面垂直的判定定理,屬于中檔題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在12件同類型的零件中有2件次品,抽取3次進行檢驗,每次抽取1件,并且取出后不再放回,若以ξ和η分別表示取到的次品數(shù)和正品數(shù).
(1)求ξ的分布列、均值和方差;
(2)求η的分布列、均值和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(),焦點到準線的距離為,過點作直線交拋物線于點(點在第一象限).
(Ⅰ)若點焦點重合,且弦長,求直線的方程;
(Ⅱ)若點關(guān)于軸的對稱點為,直線交x軸于點,且,求證:點B的坐標是,并求點到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b是不同的直線,α,β是不同的平面,則下列四個命題中正確的是________.(填序號)
① 若a⊥b,a⊥α,則b∥α;② 若a∥α,α⊥β,則a⊥β;
③ 若a⊥β,α⊥β,則a∥α;④ 若a⊥b,a⊥α,b⊥β,則α⊥β.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,橢圓:的離心率為,是橢圓的焦點,直線的斜率為,為坐標原點.
(Ⅰ)求的方程;
(Ⅱ)設(shè)過點的直線與相交于兩點,當的面積最大時,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點且斜率為的直線與圓:交于點兩點.
(1)求的取值范圍;
(2)請問是否存在實數(shù)k使得(其中為坐標原點),如果存在請求出k的值,并求;如果不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中, , , ,四邊形為矩形,平面平面, .
(1)求證: 平面;
(2)點在線段上運動,設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心為坐標原點,其離心率為,橢圓的一個焦點和拋物線的焦點重合.
(1)求橢圓的方程
(2)過點的動直線交橢圓于、兩點,試問:在平面上是否存在一個定點,使得無論如何轉(zhuǎn)動,以為直徑的圓恒過點,若存在,說出點的坐標,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com