(本小題滿分12分)
如圖,四棱錐中,底面是邊長(zhǎng)為2的正方形,,且,中點(diǎn).

(1)求證:平面
(2)求二面角的余弦值.

(1)推證平面,得到,同理可證平面
(2) 。

解析試題分析:(1)證明:∵底面為正方形,
,又, ∴平面,∴     ………2分
同理可證, ∴平面.                     ………4分
(2)建立如圖的空間直角坐標(biāo)系,,

.       ………6分
設(shè)為平面的一個(gè)法向量,
,.又

  ………9分
是平面的一個(gè)法向量, ………10分
設(shè)二面角的大小為 ,則
  ………12分
考點(diǎn):本題主要考查立體幾何中的垂直關(guān)系,角的計(jì)算。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟。本題通過(guò)空間直角坐標(biāo)系,利用向量知識(shí)可簡(jiǎn)化證明過(guò)程。把證明問(wèn)題轉(zhuǎn)化成向量的坐標(biāo)運(yùn)算,這種方法帶有方向性。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,平面,底面是菱形,,

(Ⅰ)求證:
(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)如圖,五面體中, ,底面ABC是正三角形, =2.四邊形是矩形,二面角為直二面角,D為中點(diǎn)。
(I)證明:平面
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.

(1) 求證:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求線段AC與AA1長(zhǎng)度之比;
(3) 若D是棱CC1的中點(diǎn),問(wèn)在棱AB上是否存在一點(diǎn)E,使DE∥平面AB1C1?若存在,試確定點(diǎn)E的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知兩個(gè)正四棱錐P-ABCD與Q-ABCD的高分別為1和2,AB=4.

(Ⅰ)證明PQ⊥平面ABCD;
(Ⅱ)求異面直線AQ與PB所成的角;
(Ⅲ)求點(diǎn)P到平面QAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,等腰△ABC的底邊AB=6,高CD=3,點(diǎn)E是線段BD上異于點(diǎn)B、D的動(dòng)點(diǎn).點(diǎn)F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.記,用表示四棱錐P-ACFE的體積.

(Ⅰ)求 的表達(dá)式;
(Ⅱ)當(dāng)x為何值時(shí),取得最大值?
(Ⅲ)當(dāng)V(x)取得最大值時(shí),求異面直線AC與PF所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分)
如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長(zhǎng)AB=2,側(cè)棱BB1的長(zhǎng)為4,過(guò)點(diǎn)B作B1C的垂線交側(cè)棱CC1于點(diǎn)E,交B1C于點(diǎn)F,

⑴求證:A1C⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分16分)如圖,在六面體中,,,.

求證:(1);(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平行四邊形中,,,將沿折起,使

(1)求證:平面; 
(2)求平面和平面夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案